Spelling suggestions: "subject:"drosophila melanogaster."" "subject:"rosophila melanogaster.""
41 |
The role of visual subsystems in Drosophila phototaxis /Baldwin, David Hugh. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 137-142).
|
42 |
Identification of transposon-tagged genes associated with stubble-stubbloid function during leg morphogenesis in drosophilia melanogasterCamarata, Troy Douglas 01 April 2002 (has links)
No description available.
|
43 |
An analysis of some gene effects on behaviour in Drosophila melanogasterZuill, Eldon E. January 1970 (has links)
No description available.
|
44 |
Genetic and Neural Mechanisms Regulating the Interaction Between Sleep and Metabolism in Drosophila MelanogasterUnknown Date (has links)
Dysregulation of sleep and metabolism has enormous health consequences. Sleep
loss is linked to increased appetite and insulin insensitivity, and epidemiological studies
link chronic sleep deprivation to obesity-related disorders. Interactions between sleep and
metabolism involve the integration of signalling from brain regions regulating sleep,
feeding, and metabolism, as well as communication between the brain and peripheral
organs. In this series of studies, using the fruit fly as a model organism, we investigated
how feeding information is processed to regulate sleep, and how peripheral tissues
regulate sleep through the modulation of energy stores.
In order to address these questions, we performed a large RNAi screen to identify
novel genetic regulators of sleep and metabolism. We found that, the mRNA/DNA
binding protein, Translin (trsn), is necessary for the acute modulation of sleep in
accordance with feeding state. Flies mutant for trsn or selective knockdown of trsn in
Leucokinin (Lk) neurons abolishes starvation-induced sleep suppression. In addition, genetic silencing of Lk neurons or a mutation in the Lk locus also disrupts the integration
between sleep and metabolism, suggesting that Lk neurons are active during starvation.
We confirmed this hypothesis by measuring baseline activity during fed and starved
states. We found that LHLK neurons, which have axonal projections to sleep and
metabolic centers of the brain, are more active during starvation. These findings suggest
that LHLK neurons are modulated in accordance with feeding state to regulate sleep.
Finally, to address how peripheral tissues regulate sleep, we performed an RNAi
screen, selectively knocking down genes in the fat body. We found that knockdown of
Phosphoribosylformylglycinamidine synthase (Ade2), a highly conserved gene involved
the biosynthesis of purines, regulates sleep and energy stores. Flies heterozygous for two
Ade2 mutations are short sleepers and this effect is partially rescued by restoring Ade2 to
the fly fat body. These findings suggest Ade2 functions within the fat body to promote
both sleep and energy storage, providing a functional link between these processes.
Together, the experimental evidence presented here provides an initial model for how the
peripheral tissues communicate to the brain to modulate sleep in accordance with
metabolic state. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
|
45 |
Phosphorylation of exuperantia protein in drosophila melanogaster.January 1997 (has links)
by Yin Cheung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 146-164). / Acknowledgments --- p.i / Abstract --- p.ii / Abbreviations --- p.iv / Chapter CHAPTER 1 --- General Introduction --- p.1 / Chapter 1.1 --- Drosophila as a model for studying development --- p.1 / Chapter 1.2 --- The formation of the body axes of Drosophila --- p.3 / Chapter 1.2.1 --- Oogenesis --- p.5 / Chapter 1.2.2 --- Embryogenesis --- p.15 / Chapter 1.2.3 --- Segmentation --- p.16 / Chapter 1.2.4 --- Life cycle --- p.20 / Chapter 1.3 --- Egg-polarity genes are essential for development --- p.22 / Chapter 1.4 --- Maternal gene bicoid is required for formation of anterior structures in the embryo --- p.24 / Chapter 1.4.1 --- Phenotypes of bicoid mutant --- p.24 / Chapter 1.4.2 --- Transplantation experiment --- p.26 / Chapter 1.4.3 --- Establishment of an anterior to posterior bicoid protein gradient --- p.26 / Chapter 1.4.4 --- Localization step of bicoid mRNA --- p.27 / Chapter 1.4.5 --- Formation of bicoid protein gradient --- p.28 / Chapter 1.4.6 --- The bicoid protein gradient regulates the downstream zygotic target genes in a concentration-dependent manner --- p.31 / Chapter 1.4.6.1 --- Bicoid protein acts as transcriptional regulators --- p.31 / Chapter 1.4.6.2 --- Bicoid protein acts as transcriptional activators --- p.31 / Chapter 1.4.6.3 --- Bicoid protein acts as translational repressor --- p.34 / Chapter 1.5 --- Components required for the localization of bicoid mRNA --- p.35 / Chapter 1.5.1 --- Cis-acting elements --- p.35 / Chapter 1.5.1.1 --- Bicoid mRNA localization element (BLE1) at 3、UTR directs localization of bicoid mRNA --- p.36 / Chapter 1.5.2 --- Trans-acting elements --- p.37 / Chapter 1.5.2.1 --- exuperantia --- p.40 / Chapter 1.5.2.2 --- swallow --- p.41 / Chapter 1.5.2.3 --- staufen --- p.42 / Chapter 1.5.2.4 --- cytoskeleton --- p.44 / Chapter 1.6 --- Aim of project --- p.48 / Chapter CHAPTER 2 --- Characterization of exuperantia protein --- p.50 / Chapter 2.1 --- Introduction --- p.50 / Chapter 2.1.1 --- Localization step of exuperantia protein in wild type --- p.50 / Chapter 2.1.2 --- Phenotype of exuperantia mutant --- p.51 / Chapter 2.1.3 --- exuperantia gene in both female and male flies --- p.52 / Chapter 2.2 --- Materials and Methods --- p.59 / Chapter 2.2.1 --- General characteristic of exuperantia protein --- p.59 / Chapter 2.2.1.1 --- Preparation of total ovary protein from the female and male flies --- p.59 / Chapter 2.2.1.2 --- Analysis of exuperantia protein by Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis (SDS - PAGE) and Western blotting --- p.60 / Chapter 2.2.2 --- Determination of the type of phosphorylation residues in exuperantia protein --- p.61 / Chapter 2.2.2.1 --- Preparation of immunoprecipitated exuperantia protein from ovary and testis --- p.61 / Chapter 2.2.2.2 --- Dephosphorylation of exuperantia protein --- p.62 / Chapter 2.2.3 --- Two-dimensional gel electrophoresis analysis of exuperantia protein --- p.63 / Chapter 2.3 --- Results --- p.65 / Chapter 2.3.1 --- General characteristic of exuperantia protein --- p.65 / Chapter 2.3.2 --- Determination of the type of phosphorylation residues in exuperantia protein --- p.67 / Chapter 2.3.3 --- Resolving the multiple phosphorylated isoforms of exuperantia protein by two-dimensional gel electrophoresis --- p.69 / Chapter 2.4 --- Discussion --- p.72 / Chapter CHAPTER 3 --- Determination of the type of kinase(s) phosphorylate exuperantia protein --- p.77 / Chapter 3.1 --- Introduction --- p.77 / Chapter 3.2 --- Materials and Methods --- p.83 / Chapter 3.2.1 --- Phosphorylation of recombinant exuperantia protein --- p.83 / Chapter 3.2.1.1 --- Immunoprecipitation of recombinant exuperantia protein and phosphorylation reaction --- p.83 / Chapter 3.2.1.2 --- Sequential phosphorylation reaction --- p.84 / Chapter 3.2.2 --- Inhibitory effect(s) of protein kinase inhibitors on phosphorylation of native exuperantia protein --- p.85 / Chapter 3.2.2.1 --- Incubation of ovaries with protein kinase inhibitors --- p.85 / Chapter 3.2.3 --- Phosphorylation of native exuperantia protein by endogenous protein kinase(s) --- p.86 / Chapter 3.2.3.1 --- Preparation of total tissue homogenate --- p.86 / Chapter 3.2.3.2 --- Endogenous kinase assay --- p.86 / Chapter 3.3 --- Results --- p.88 / Chapter 3.3.1 --- Phosphorylation of recombinant exuperantia protein by exogenous kinase(s) --- p.88 / Chapter 3.3.2 --- Inhibitory effect(s) of protein kinase inhibitors on phosphorylation of native exuperantia protein --- p.92 / Chapter 3.3.3 --- Phosphorylation of native exuperantia protein by endogenous protein kinase(s) --- p.94 / Chapter 3.3.3.1 --- Phosphorylation of native exuperantia protein by endogenous kinase(s) with addition of protein kinase activators --- p.94 / Chapter 3.3.3.2 --- Phosphorylation of native exuperantia protein by endogenous kinase(s) with addition of protein kinase inhibitor --- p.98 / Chapter 3.4 --- Discussion --- p.101 / Chapter CHAPTER 4 --- Spatial and temporal distribution of exuperantia protein in DCO83 and exuPJ egg chambers --- p.107 / Chapter 4.1 --- Introduction --- p.107 / Chapter 4.1.1 --- Initiation of establishment of the two body axes by one single signal --- p.107 / Chapter 4.1.2 --- Stage-specific phosphorylation of exuperantia protein --- p.111 / Chapter 4.2 --- Materials and Methods --- p.113 / Chapter 4.2.1 --- Immunohistochemical distribution of exuperantia protein --- p.113 / Chapter 4.2.2 --- Stage-specific phosphorylation of exuperantia protein --- p.115 / Chapter 4.3 --- Results --- p.116 / Chapter 4.3.1 --- Immunohistochemical distribution of exuperantia protein in DCOB3 mutant --- p.119 / Chapter 4.3.2 --- Immunohistochemical distribution of exuperantia protein in exuPJ mutant --- p.121 / Chapter 4.3.3 --- Stage-specific phosphorylation of exuperantia protein in DCOB3 mutant --- p.125 / Chapter 4.3.4 --- Stage-specific phosphorylation of exuperantia protein of exuPJ mutant --- p.127 / Chapter 4.4 --- Discussion --- p.128 / Appendix A --- p.135 / Appendix B --- p.143 / References --- p.146
|
46 |
Novelty choice in Drosophila melanogaster / Neuigkeitseffekt im Mustersehen von Drosophila melanogasterSolanki, Narendra January 2013 (has links)
This study explores novelty choice, a behavioral paradigm for the investigation of visual pattern recognition and learning of the fly Drosophila melanogaster in the flight simulator. Pattern recognition in novelty choice differs significantly from pattern recognition studied by heat conditioning, although both paradigms use the same test. Out of the four pattern parameters that the flies can learn in heat conditioning, novelty choice can be shown for height (horizontal bars differing in height), size and vertical compactness but not for oblique bars oriented at +/- 45°. Upright and inverted Ts [differing in their centers of gravity (CsOG) by 13°] that have been extensively used for heat conditioning experiments, do not elicit novelty choice. In contrast, horizontal bars differing in their CsOG by 13° do elicit novelty choice; so do the Ts after increasing their CsOG difference from 13° to 23°. This indicates that in the Ts the heights of the CsOG are not the only pattern parameters that matter for the novelty choice behavior. The novelty choice and heat conditioning paradigms are further differentiated using the gene rutabaga (rut) coding for a type 1 adenylyl cyclase. This protein had been shown to be involved in memory formation in the heat conditioning paradigm. Novelty choice is not affected by mutations in the rut gene. This is in line with the finding that dopamine, which in olfactory learning is known to regulate Rutabaga via the dopamine receptor Dumb in the mushroom bodies, is dispensable for novelty choice. It is concluded that in novelty choice the Rut cAMP pathway is not involved. Novelty choice requires short term working memory, as has been described in spatial orientation during locomotion. The protein S6KII that has been shown to be involved in visual orientation memory in walking flies is found here to be also required for novelty choice. As in heat conditioning the central complex plays a major role in novelty choice. The S6KII mutant phenotype for height can be rescued in some subsets of the ring neurons of the ellipsoid body. In addition the finding that the ellipsoid body mutants ebo678 and eboKS263 also show a mutant phenotype for height confirm the importance of ellipsoid body for height novelty choice. Interestingly some neurons in the F1 layer of the fan-shaped body are necessary for height novelty choice. Furthermore, different novelty choice phenotypes for different pattern parameters are found with and without mushroom bodies. Mushroom bodies are required in novelty choice for size but they are dispensable for height and vertical compactness. This special circuit requirement for the size parameter in novelty choice is found using various means of interference with mushroom body function during development or adulthood. / Diese Studie untersucht Novelty Choice, ein Verhaltens-Paradigma für die Untersuchung der visuellen Mustererkennung und des Lernens der Fliege Drosophila melanogaster im Flugsimulator. Mustererkennung in Novelty Choice unterscheidet sich deutlich von Mustererkennung durch heat conditioning, obwohl beide Paradigmen den gleichen Test verwenden. Von den vier Muster-Parametern, die die Fliegen im heat conditioning für die Musterunterscheidung lernen kann, lernt sie in Novelty Choice nur die Höhe (horizontale Balken in unterschiedlicher Höhe), Größe und vertikale Kompaktheit, nicht dagegen die schrägen Balken im Winkel von +/- 45°. Aufrechte und umgekehrte Ts [hinsichtlich ihrer Schwerpunkte (CsOG) um 13° voneinander verschieden], die bisher weitgehend für heat conditioning Experimente verwendet werden, lösen kein Novelty Choice aus. Im Gegensatz dazu reagiert die Fliege auf horizontale Balken, die sich in ihren CsOG um 13° unterscheiden, mit Novelty Choice. Auch die Ts lösen Novelty Choice aus, wenn ihre CsOG-Differenzen von 13° auf 23° erhöht wird. Dies deutet darauf hin, dass in den Ts die Höhen der CsOG nicht die einzigen relevanten Musterparameter für Novelty Choice Verhalten sind. Die Novelty Choice und heat conditioning Paradigmen unterscheiden sich darüber hinaus in der Rolle des Gens rutabaga (rut), das eine Typ-1-Adenylylcyclase codiert. Für dieses Protein wurde gezeigt, dass es bei der Gedächtnisbildung in der heat conditioning beteiligt ist. Novelty Choice wird nicht durch Mutationen im Gen rut beeinflusst. Dies steht im Einklang mit der Erkenntnis, dass Dopamin, das bei olfaktorischem Lernen bekanntermaßen Rutabaga über den Dopamin-Rezeptor Dumb in den Pilzkörpern reguliert, entbehrlich für die Novelty Choice ist. Die Schlussfolgerung ist, dass der Rut cAMP Signalweg bei der Novelty Choice nicht beteiligt ist. Novelty choice erfordert kurzfristigen Arbeitsgedächtnisspeicher, wie in der räumlichen Orientierung während der Fortbewegung beschrieben wurde. Das Protein S6KII, für welches gezeigt wurde, dass es am visuellen Orientierungsgedächtnis laufender Fliegen beteiligt ist, wird hier als ebenso notwendig für Novelty Choice entdeckt. Wie in heat conditioning spielt der Zentralkomplex eine wichtige Rolle in Novelty Choice. Der S6KII Mutantenphänotyp für Höhe kann in einigen Untergruppen der Ring-Neuronen des Ellipsoidkörpers gerettet werden. Weiterhin kann festgestellt werden, dass die Ellipsoidkörper-Mutanten ebo678 und eboKS263, welche ebenfalls einen Mutantenphänotyp für Höhe zeigen, die Bedeutung des Ellipsoidkörpers für die Novelty Choice hinsichtlich des Höheparameters bestätigen. Interessanterweise sind einige Neuronen in der F1-Schicht des Fächerförmigen Körpers notwendig für Novelty Choice (für Höhe). Darüber hinaus werden mit und ohne Pilzkörper unterschiedliche Phänotypen für verschiedene Musterparameter bei Novelty Choice gefunden. Die Pilzkörper sind in der Novelty Choice für Größe erforderlich, aber für Höhe und vertikale Kompaktheit sind sie entbehrlich. Diese spezielle Schaltungsvoraussetzung für den Größenparameter in Novelty Choice wird unter Verwendung verschiedener Mittel der Interferenz mit Pilzkörperfunktionen während der Entwicklung oder im Erwachsenenalter gefunden.
|
47 |
A comprehensive genomic analysis of nucleoside transporters and the functional characterization of the Drosophila equilibrative nucleoside transporter Isoform DmENT2 /Machado, Jerry. January 2004 (has links)
Thesis (M.Sc.)--York University, 2004. Graduate Programme in Biology. / Typescript. Includes bibliographical references (leaves 46-56). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url%5Fver=Z39.88-2004&res%5Fdat=xri:pqdiss&rft%5Fval%5Ffmt=info:ofi/fmt:kev:mtx:dissertation&rft%5Fdat=xri:pqdiss:MQ99354
|
48 |
Regulation of Psc-Su(z)2 genes in drosophila melanogasterPark, Sung-Yeon. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Biochemistry." Includes bibliographical references (p. 92-99).
|
49 |
Forward and reverse genetic approaches to studying synaptic transmission in Drosophila melanogaster /Babcock, Michael Cameron, January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (leaves 131-147).
|
50 |
Deciphering a cis-regulatory code in the genome of Drosophila melanogaster /Markstein, Michele Marianne. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Developmental Biology, December 2003. / Includes bibliographical references. Also available on the Internet.
|
Page generated in 0.0728 seconds