• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 12
  • 12
  • 6
  • 6
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Neuropeptides et Néprilysines : rôle dans la mémoire chez la Drosophile / Neuropeptides and Neprilysins : role in memory in Drosophila

Turrel, Oriane 28 September 2017 (has links)
Au cours de ma thèse j’ai étudié les néprilysines (Nep), des protéinases connues pour dégrader de petits neuropeptides, en particulier les peptides amyloïdes (Aβ). Lors de la maladie d’Alzheimer, les peptides Aβ s’agrègent pour former des plaques toxiques. Il a été montré que l’expression des Nep module l’effet toxique d’Aβ sur la mémoire chez les modèles murins. Néanmoins, le rôle des Nep dans la mémoire dans des conditions physiologiques reste à ce jour inconnu.La drosophile exprime 4 Nep dans le système nerveux central adulte. Nous avons analysé leur rôle dans la mémoire olfactive. Les 4 Nep sont requises pour 2 phases spécifiques de mémoire: à moyen terme (MTM) et à long terme (LTM). De plus, nous avons identifié les neurones dans lesquels elles sont requises : les Mushroom Bodies (MB) ainsi qu’une paire de neurones afférents, les Dorsal Paired Medial neurons (DPM). Nous avons ensuite cherché à savoir si Aβ était l’une des cibles des Nep. Nous avons montré que l’expression d’Aβ dans les DPM n’altère la MTM que lorsque l’expression de Nep1 est inhibée. De plus, le défaut de LTM de drosophiles exprimant Aβ dans les DPM est sauvé par la surexpression de Nep1. En conclusion, nos résultats suggèrent qu’Aβ est dégradé par Nep1 au cours des processus de mémorisation, et qu’Aβ est une cible de Nep1 en conditions non pathologiques.Enfin, nous nous sommes intéressés au neuropeptide amnesiac, décrit comme étant requis pour la mémoire dans les DPM. Nos travaux démontrent qu’amnesiac est en fait requis dans les DPM pour leur développement, et chez l’adulte dans les MB pour activer l’adénylate cyclase responsable de la détection de coïncidence permettant la formation de la MTM. / During my PhD, I studied neprilysins, proteinases known to degrade small neuropeptides, in particular mammalian amyloid-β peptides (Aβ). During Alzheimer’s disease, Aβ peptides aggregate to form toxic plaques. It has been shown that neprilysins expression modulates toxic effects of Aβ on memory in murine models of the disease. However, the role of neprilysins in memory under physiological conditions is still unknown. Drosophila expresses 4 neprilysins in the adult central nervous system. First we have analyzed their role in olfactive memory. We have shown that all of them are required for 2 specific memory phases: Middle-Term Memory (MTM) and Long-Term Memory (LTM). We also have identified the neurons in which they are required: the Mushroom Bodies (MB) and a pair of afferent neurons, the Dorsal Paired Medial (DPM) neurons. Then we investigated whether Aβ peptides could be one of the neprilysins’ targets. We have shown that Aβ expression in DPM neurons alters MTM only when Nep1 expression is inhibited. Furthermore, the LTM deficit of flies expressing Aβ in DPM neurons is rescued by Nep1 overexpression. To conclude, our results suggest that Nep1 degrades endogenous Aβ peptides during memory processes, and that Aβ is a physiological target for Nep1 under non-pathological condition.Finally, we became interested in the amnesiac neuropeptide, described as being required for memory in DPM neurons. Our work shows that amnesiac is actually required in DPM neurons for their development, and in the MB of adult flies in order to activate the adenylate cyclase responsible for coincidence detection leading to MTM formation.
12

Traitement d’images de microscopie confocale 3D haute résolution du cerveau de la mouche Drosophile / Three-dimensional image analysis of high resolution confocal microscopy data of the Drosophila melanogaster brain

Murtin, Chloé Isabelle 20 September 2016 (has links)
La profondeur possible d’imagerie en laser-scanning microscopie est limitée non seulement par la distance de travail des lentilles de objectifs mais également par la dégradation de l’image causée par une atténuation et une diffraction de la lumière passant à travers l’échantillon. Afin d’étendre cette limite, il est possible, soit de retourner le spécimen pour enregistrer les images depuis chaque côté, or couper progressivement la partie supérieure de l’échantillon au fur et à mesure de l‘acquisition. Les différentes images prises de l’une de ces manières doivent ensuite être combinées pour générer un volume unique. Cependant, des mouvements de l’échantillon durant les procédures d’acquisition engendrent un décalage non seulement sur en translation selon les axes x, y et z mais également en rotation autour de ces même axes, rendant la fusion entres ces multiples images difficile. Nous avons développé une nouvelle approche appelée 2D-SIFT-in-3D-Space utilisant les SIFT (scale Invariant Feature Transform) pour atteindre un recalage robuste en trois dimensions de deux images. Notre méthode recale les images en corrigeant séparément les translations et rotations sur les trois axes grâce à l’extraction et l’association de caractéristiques stables de leurs coupes transversales bidimensionnelles. Pour évaluer la qualité du recalage, nous avons également développé un simulateur d’images de laser-scanning microscopie qui génère une paire d’images 3D virtuelle dans laquelle le niveau de bruit et les angles de rotations entre les angles de rotation sont contrôlés avec des paramètres connus. Pour une concaténation précise et naturelle de deux images, nous avons également développé un module permettant une compensation progressive de la luminosité et du contraste en fonction de la distance à la surface de l’échantillon. Ces outils ont été utilisés avec succès pour l’obtention d’images tridimensionnelles de haute résolution du cerveau de la mouche Drosophila melanogaster, particulièrement des neurones dopaminergiques, octopaminergiques et de leurs synapses. Ces neurones monoamines sont particulièrement important pour le fonctionnement du cerveau et une étude de leur réseau et connectivité est nécessaire pour comprendre leurs interactions. Si une évolution de leur connectivité au cours du temps n’a pas pu être démontrée via l’analyse de la répartition des sites synaptiques, l’étude suggère cependant que l’inactivation de l’un de ces types de neurones entraine des changements drastiques dans le réseau neuronal. / Although laser scanning microscopy is a powerful tool for obtaining thin optical sections, the possible depth of imaging is limited by the working distance of the microscope objective but also by the image degradation caused by the attenuation of both excitation laser beam and the light emitted from the fluorescence-labeled objects. Several workaround techniques have been employed to overcome this problem, such as recording the images from both sides of the sample, or by progressively cutting off the sample surface. The different views must then be combined in a unique volume. However, a straightforward concatenation is often not possible, because the small rotations that occur during the acquisition procedure, not only in translation along x, y and z axes but also in rotation around those axis, making the fusion uneasy. To address this problem we implemented a new algorithm called 2D-SIFT-in-3D-Space using SIFT (scale Invariant Feature Transform) to achieve a robust registration of big image stacks. Our method register the images fixing separately rotations and translations around the three axes using the extraction and matching of stable features in 2D cross-sections. In order to evaluate the registration quality, we created a simulator that generates artificial images that mimic laser scanning image stacks to make a mock pair of image stacks one of which is made from the same stack with the other but is rotated arbitrarily with known angles and filtered with a known noise. For a precise and natural-looking concatenation of the two images, we also developed a module progressively correcting the sample brightness and contrast depending on the sample surface. Those tools we successfully used to generate tridimensional high resolution images of the fly Drosophila melanogaster brain, in particular, its octopaminergic and dopaminergic neurons and their synapses. Those monoamine neurons appear to be determinant in the correct operating of the central nervous system and a precise and systematic analysis of their evolution and interaction is necessary to understand its mechanisms. If an evolution over time could not be highlighted through the pre-synaptic sites analysis, our study suggests however that the inactivation of one of these neuron types triggers drastic changes in the neural network.

Page generated in 0.599 seconds