• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

In vitro selection of stress tolerant cell lines and plants of Tagetes spp

Abd El-Hakeem Mohamed, Mahmoud January 2000 (has links)
No description available.
2

Drought hardiness in tomatoes

Chaudhry, Anwar Tariqu, 1940- January 1967 (has links)
No description available.
3

Role of tree structure for drought resilience: Insights from a semi-arid ecosystem

Guerin, Marceau January 2018 (has links)
Recent increase in forest mortality events worldwide and their relationship with drought episodes highlight the importance of understanding tree resilience to a changing climate. Empirical models of forest mortality have been typically used and were focusing on carbon related variables such as growth to predict tree death. Recent efforts have shifted toward a more mechanistic modeling of mortality. Mechanistic approaches use tree traits and climate as inputs to model processes and represent carbon and water fluxes, all necessary to plant life. The advantage of mechanistic approaches is their ability to account for potential adaptation of trees to climate change, but also to physically explore the causes of vulnerability and resilience to droughts. Mechanistically, the atmospheric demand for moisture at the canopy level is communicated to the tree through stomata, creating a water gradient between the leaves and the roots, and resulting in the ascent of sap via the plant hydraulic structure. Depending on the climate (temperature, atmospheric dryness, light, precipitation), different architectures will perform differently at maintaining the gradient. For example, deep roots can access deep water in dry regions and shallow roots can access rare precipitation events whereas larger leaf area increases the atmospheric demand for moisture. In very harsh conditions such as extreme or lasting droughts, the hydraulic structure might suffer from a steep water gradient. Protection against excessive gradients can be achieved either through an investment in a stronger structure (denser wood) or through a regulation of the pulling force at the top of the canopy (closing leaf stomata). Evolution of structures and physiological strategies have resulted in fitness advantages and partially explain the diversity of species architectures across climates. More importantly, this diversity is at the core of the vulnerability and resilience of each species to increased aridity and frequency of extreme events, and therefore its mortality. This dissertation investigates the resilience to droughts of two co-occuring species in common woodlands of New Mexico, USA. This location is of specific interest because drought conditions (high temperature and/or low precipitation) have become more frequent as a result of global warming and because these ecosystems have suffered extensive mortality in the last decades. The two species, Pinus edulis and Juniper monosperma have very different physiological strategies, which allows for an extra level of vulnerability comprehension. To further test their resilience to extreme drought and possibly future climatic conditions, I studied trees that were subject to a six-year rain-reduction experiment. In the first part we develop a mechanistic model of the tree functioning that includes water and carbon fluxes and is based on their respective supply-demand balances. We use this simplified mechanistic model to study the sensitivity of mortality to hydraulic structure variations and to the physiological strategy of each species. We find that for both species death resulted from an irreversible damage of tissues transporting water. Despite P. edulis’s ability to close stomata to reduce the atmospheric demand, they died first because of their vulnerable tissues. In the second part, I specifically investigate P. edulis’s structural response to drought at the canopy level. By dissecting branch anatomy at an annual resolution, I find that during droughts this species increase relatively more leaf area (water demand) compared to transport area (water supply). I suggest that the structural adjustments that occur at the branch level do not contribute to the protection of the tissues transporting water. In the third part, I analyze the anatomy of these tissues in branches of P. edulis. I find that in response to long-lasting drought the trees built tissues more efficient at transporting water but also more vulnerable to future drought. By contrast, a short-intense drought decreases efficiency without changing vulnerability. I hence show that during lasting drought the anatomical adjustment of branch tissues increase the vulnerability of the piñons. This study shows the importance of considering climate responses of structure and physiology together to compare resilience across species. It also shows that adjustments of hydraulic elements in response to drought tend to decrease hydraulic resilience and could favor a run-away scenario. If the population of Pinus edulis - a dominant species of the Southwest US - were to decline, major shift should be expected in related ecosystems.
4

Physiological and anatomical features of variable drought resistant varieties of spring wheat

Bartel, A. T. (Arthur Theodore), 1905- January 1941 (has links)
No description available.
5

An alternative solution for water conservation using exotic plant species in the lower Kanawha Valley region and implemented in the design of an arboretum

Adkins, Lindsey M. January 2008 (has links)
Conserving the earth's precious water supply is of increasing importance in light of the growing population and climate dynamics; therefore, this study focuses on identifying those exotic species that are best suited for the changing climate and environment of the Lower Kanawha Valley Region in West Virginia without compromising the water sustainable qualities once exhibited by the indigenous species. This task was accomplished by reviewing, analyzing, and evaluating the plant hydraulics and habitat matching characteristics associated with the identified native and exotic species. These species were limited to those produced or found in the local nurseries and garden centers in the designated region, thereby providing a practical and water sustainable plant list for the local homeowners and design professionals. The final list of species was translated into a master planting design of an arboretum displaying and demonstrating water conservation on the grounds of the Hurricane Valley Park. / Department of Landscape Architecture
6

Modelling amenity landscape plant water use in South Africa

Hoy, Leslie Higham 12 1900 (has links)
South Africa is classified as a semi-arid environment with limited natural water sources. Amenity landscapes provide broad ranging benefits for society. Amenity landscapes account for between 31% - 50% of water supplied for domestic and urban use. To reduce water use and water conservation in amenity landscapes, strategies, regulations and interventions are required. Every landscape is a unique complex system with a large number of variables that differ from each other. The variability can be summarized into management/design, irrigation, climatological, edaphic and plant related aspects. Several amenity landscape water use models have been developed around the world and two in South Africa. This study developed a comprehensive South African hydrozone based plant database and an Amenity Landscape Water Use Model South Africa (ALWUMSA). This will improve hydrozoning of amaneity landscapes and ultimately also improve water conserbvation for these sites. It allows users/owners to determine water use requirements through an extensive data gathering, from aspects such as design, management, microclimate, environmental, edaphic, irrigation and plant related factors. Comparisons of results from ALWUMSA to three test sites, selected existing models and a range of scenarios produced results demonstrating that ALWUMSA consistently projected lower water requirements. The model also allows for site aspects to be changed thus encouraging end users to implement specific water saving intiatives with the amenity landscape to reduce water use. These savings will be translated into both water-use savings as well as financial savings for users of the amenity landscape water use model. / Environmental Sciences / Ph. D. (Environmental Science)

Page generated in 0.0602 seconds