• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Development of Novel Apurinic/Aprymidinic Endonuclease/Redox-factor 1 Inhibitors for the Treatment of Human Melanoma

Sharifi, Bella 19 December 2019 (has links)
Apurinic/apyrimidinic DNA repair endonuclease-1 (APE1), first recognized as an important DNA excision repair enzyme, is also known as Redox Factor-1 (Ref-1) involved in the activation of many nuclear transcription factors in both redox-dependent and independent manner. It has been well-documented that the overexpression of APE/Ref-1 contributes to the development of chemo-resistance and is associated with tumor progression in many human malignancies [1]. Our previous study in melanoma demonstrated that the development of novel inhibitors targeting the redox regulation domain of APE/Ref-1 is a promising strategy for melanoma treatment. To date, limited successes have been reported in developing novel APE/Ref-1 inhibitors for cancer treatment. Utilizing a structure-based approach, our study identified and characterized small molecular inhibitors of APE/Ref-1. First, N-terminally truncated APE/Ref-1 protein lacking the first 40 amino acid residues (∆40APE-1wt) was cloned into the pGEX-6P1 vector to express the GST-∆40APE-1wtprotein. After cleavage of GST-tag, the concentrated ∆40APE-1wt protein was subjected to protein crystallization study. We have successfully diffracted ∆40APE-1wt crystals and collected data with a resolution of 1.57Å. The crystal structure was further determined by molecular replacement in Molrep using the already available human APE-1 structure (PDB: 5CFG). For the first time, we observed the dimerization of APE/Ref-1 protein formed under oxidative conditions, which may contribute to the redox regulation of APE/Ref-1. Such structural transformation of APE/Ref-1 protein under distinct redox conditions may pave the way for future drug development and optimization. The binding affinity of the candidate compounds with ∆40APE-1wt protein was also determined using Surface Plasmon Resonance (SPR), and the Ki values were analyzed. One of the potent inhibitors developed by our group by structure-based approach, exhibited promising anti-melanoma activities both in vitro and in vivo. Future studies on the structure-activity association are warranted.

Page generated in 0.0732 seconds