• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of CRD-Fc fusion protein to enhance pathogen killing

Pennelegion, Christopher January 2015 (has links)
No description available.
2

Resistance of pig pathogens and commensals to antimicrobial drugs : mechanisms and avoidance

Dorey, Lucy Diane January 2016 (has links)
No description available.
3

Molecular characterization of the hexose transporter (PfHT1) of Plasmodium falciparum in Xenopus laevis oocytes

Manning, Suzanne Kathryn 21 November 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Biochemistry))--University of Pretoria, 2005. / Biochemistry / unrestricted
4

Towards an eradication strategy for mycoplasma hypneumoniae from the UK pig herd

Brewster, Veronica Rose January 2016 (has links)
No description available.
5

Resveratrol augments paclitaxel treatment in MDA-MB-231 and paclitaxel-resistant MDA-MB-231 breast cancer cells

Sprouse, Alyssa A. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Resveratrol has been shown to inhibit cell growth and induce apoptosis, as well as augment chemotherapeutics and irradiation in multiple cancer types. However, it is unknown if resveratrol is beneficial for treating drug-resistant cancer cells. To study the effects of resveratrol in triple negative breast cancer cells that are resistant to the common cancer drug, paclitaxel, a novel paclitaxel-resistant cell line was generated from the MDA-MB-231 breast cancer cell line. The resulting cell line, MDA-MB-231/PacR, exhibited a 12-fold increased resistance to paclitaxel but remained sensitive to resveratrol treatment. Resveratrol treatment reduced cell proliferation and colony formation and increased senescence and apoptosis in both the parental MDA-MB-231 and MDA-MB-231/PacR cell lines. Importantly, resveratrol treatment augments the effects of paclitaxel in both cell lines. The expression of the drug efflux transporter gene, MDR1, and the main metabolizing enzyme of paclitaxel gene, CYP2C8, was increased in the resistant cells. Moreover, pharmacological inhibition of the protein products of these genes, P-glycoprotein and CYP2C8, decreased paclitaxel resistance in the resistant but not in the parental cells, which suggests that the increase of these proteins are important contributors to the resistance of these cells. In conclusion, these studies imply that resveratrol, both alone and in combination with paclitaxel, may be useful in the treatment of paclitaxel-sensitive and paclitaxel-resistant triple negative breast cancers.

Page generated in 0.105 seconds