• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 5
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 32
  • 19
  • 18
  • 17
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Formulation and assessment of verapamil sustained release tablets

Khamanga, Sandile Maswazi Malungelo January 2005 (has links)
The oral route of drug administration is most extensively used due to the obvious ease of administration. Verapamil hydrochloride is a WHO listed phenylalkylarnine, L-type calcium channel antagonist that is mainly indicated for cardiovascular disorders such as angina pectoris, supraventricular tachycardia and hypertension. Due to its relatively short half-life of approximately 4.0 hours, the formulation of a sustained-release dosage form is useful to improve patient compliance and to achieve predictable and optimized therapeutic plasma concentrations. Direct compression and wet granulation were initially used as methods for tablet manufacture. The direct compression method of manufacture produced tablets that exhibited formulation and manufacturing difficulties. Mini-tablets containing veraparnil hydrochloride were then prepared by wet granulation using Surelease® E-7-19010.and Eudragit® NE 30D as the granulating agents after which the granules were incorporated with an hydrophilic matrix material, Carbopol® 974P NF. Granule and powder blends were evaluated using the angle of repose, loose and tapped bulk density, Can's compressibility index, Hausner's ratio and drug content. Granules with good flow properties and satisfactory compressibility were used for further studies. Tablets were subjected to thickness, diameter and weight variation tests, crushing strength, tensile strength, friability and content uniformity studies. Tablets that showed acceptable pharmaco-technical properties were selected for further analysis. Drug content uniformity and dissolution release rates were determined using a validated isocratic HPLC method. Initially, USP apparatus 1 and 3 dissolution apparatus were used to determine in-vitro drug release rates from the formulations over a 22-hour period. USP apparatus 3 was finally selected as it offers the advantages of mimicking, in part, the changes in the physicochemical environment experienced by products in the gastro-intestinal tract. Differences in release rates between the test formulations and a commercially available product, Isoptin® SR were observed at different pH's using USP apparatus 1. The release of veraparnil hydrochloride from matrix tablets was pH dependent and was markedly reduced at higher pH values. This may be due, in part, to the poor solubility of veraparnil hydrochloride at these pH values and also the possible interaction of verapamil hydrochloride with anionic polymers used in these formulations. Swelling and erosion behaviour of the tablets were evaluated and differences in behaviour were observed which may be attributed to the physico-chemical characteristics of the polymers used in this study. In-vitro dissolution profiles were characterized by the difference (j1) and similarity factor (j2) and also by a new similarity factor, Sct. In addition, the mechanism of drug release from these dosage forms was mainly evaluated using the Korsmeyer-Peppas model and the kinetics of drug release assessed using other models, including Zero order, First order, Higuchi, HixsonCrowell, Weibull and the Baker-Lonsdale model. Dissolution kinetics were best described by application of the Weibull model, and the Korsmeyer-Peppas model. The release exponent, n, confirmed that drug release from these dosage forms was due to the mixed effects of diffusion and swelling and therefore, anomalous release kinetics are predominant. In conclusion, two test batches were found to be comparable to the reference product Isoptin® SR with respect to their in-vitro release profiles.
22

Development and assessment of minocycline sustained release capsule formulations

Sachikonye, Tinotenda Chipo Victoria January 2010 (has links)
The use of minocycline for the treatment of a broad range of systemic infections and for severe acne has been associated with vestibular side effects. The severity of side effects may lead to poor adherence to therapy by patients. The use of sustained release formulations of minocycline that display slow dissolution of minocycline following administration may be beneficial in reducing the incidence and severity of side effects. Therefore, sustained release capsule dosage forms containing 100 mg minocycline (base) were manufactured and assessed for use as sustained release oral dosage forms of minocycline. Minocycline sustained release capsules were manufactured based on matrix technologies using hydroxypropylmethyl cellulose (HPMC) and Compritol® as release retarding polymers. The rate and extent of minocycline release from the capsules was evaluated using USP Apparatus 1 and samples were analysed using a validated High Performance Liquid Chromatographic (HPLC) method with ultraviolet (UV) detection. Differences in the rate and extent of minocycline release from formulations manufactured using HPMC or Compritol® were influenced by the concentration of polymer used in the formulations. The rate and extent of minocycline release was faster and greater when low concentrations of polymer were used in formulations. The effect of different excipients on the release pattern(s) of minocycline and particularly their potential to optimise minocycline release from experimental formulations was investigated. The use of diluents such as lactose and microcrystalline cellulose (MCC) revealed that lactose facilitated minocycline release when HPMC was used as the polymer matrix. In contrast, the use of lactose as diluent resulted in slower release of minocycline from Compritol® based formulations. The addition of sodium starch glycolate to HPMC based formulations resulted in slower release of minocycline than when no sodium starch glycolate was used. Compritol® based formulations were observed to release minocycline faster following addition of sodium starch glycolate and Poloxamer 188 to experimental formulations. In vitro dissolution profiles were compared to a target or reference profile using the difference and similarity factors, ƒ1 and ƒ2 , and a one way analysis of variance (ANOVA). In addition, the mechanism of minocycline release was elucidated following fitting of dissolution data to the Korsmeyer-Peppas, Higuchi and Zero order models. Minocycline release kinetics were best described by the Korsmeyer-Peppas model and the values of the release exponent, n (italics), revealed that drug release was a result of the combined effects of minocycline diffusion through matrices and erosion of the matrices. These in vitro dissolution profiles were better fit to the Higuchi model than to the Zero order model. Two formulations that displayed a fit to the Zero order model were identified for further studies as potential dosage forms for sustained release minocycline.
23

The development and assessment of a generic carbamazepine sustained release dosage form

Patel, Fathima January 2006 (has links)
Carbamazepine (CBZ) is a first-line drug used for the treatment of partial and tonic-clonic seizures. It is also the drug of choice for use during pregnancy and recommended for the treatment of seizure disorders in children. CBZ possesses the ability to induce metabolism of drugs that are transformed in the liver and has the unique ability to induce its own metabolism by a phenomenon known as ‘auto- induction’, where its biological half-life is significantly reduced during chronic administration. Large doses of CBZ are often prescribed as daily divided doses and this often adversely affects patient compliance, with the result that therapy is ineffective. A sustained-release dosage form containing CBZ is currently marketed as Tegretol® CR and the development of a generic product would provide patients with an equivalent product with a similar dosing frequency, at a reduced cost. Therefore, the development of a polymer-based matrix tablet was undertaken to produce a sustained-release dosage form of CBZ, since these dosage forms are relatively simple and cheap to produce when compared to other, more sophisticated forms of sustained-release technology. Preformulation studies were conducted to assess moisture content of excipients and dosage forms and to identify possible incompatibilities between CBZ and potential formulation excipients. Furthermore, studies were conducted to assess the potential for polymorphic transitions to occur during manufacture. Stability testing was conducted to assess the behaviour of the dosage forms under storage conditions that the product may be exposed to. Dissolution testing was undertaken using USP Apparatus 3, which allowed for a more realistic assessment and prediction of in vivo drug release rates. Samples were analysed using a high performance liquid chromatographic method that was developed and validated for the determination of CBZ. Tablets were manufactured by wet granulation and direct compression techniques, and the resultant drug release profiles were evaluated statistically by means of the f1 and f2 difference and similarity factors. The f2 factor was incorporated as an assessment criterion in the design of an artificial neural network that was used to predict drug release profiles and formulation composition. A direct compression tablet formulation was successfully adapted from a prototype wet granulation matrix formulation and a number of formulation variables were assessed to establish their effect(s) on the dissolution rate profile of CBZ that resulted from testing of the dosage forms. The particle size grade of CBZ was also investigated and it was ascertained that fine particle size grade CBZ showed improved drug release profiles when compared to the coarse grade CBZ which was desirable, since CBZ is a highly water insoluble compound. Furthermore, the impact of the viscosity grade and proportion of rate-controlling polymer, viz., hydroxypropyl methylcellulose was also investigated for its effect on drug release rates. The lower viscosity grade was found to be more appropriate for use with CBZ. The type of anti-frictional agent used in the formulations did not appear to affect drug release from the polymeric matrix tablets, however specific compounds may have an effect on the physical characteristics of the polymeric tablets. The resultant formulations did not display zero-order drug release kinetics and a first-order mathematical model was developed to provide an additional resource for athematical analysis of dissolution profiles. An artificial neural network was designed, developed and applied to predict dissolution rate profiles for formulation. Furthermore, the network was used to predict formulation compositions that would produce drug release profiles comparable to the reference product, Tegretol® CR. The formulation composition predicted by the network to match the dissolution profile of the innovator product was manufactured and tested in vitro. The formulation was further manipulated, empirically, so as to match the in vitro dissolution rate profile of Tegretol® CR, more completely. The test tablets that were produced were tested in two health male volunteers using Tegretol® CR 400mg as the reference product. The batch used for this “proof of concept” biostudy was produced in accordance with cGMP guidelines and the protocol in accordance with ICH guidelines. The test matrix tablets revealed in vivo bioavailability profiles for CBZ, however, bioequivalence between the test and reference product could not be established. It can be concluded that the polymeric matrix CBZ tablets have the potential to be used as a twice-daily dosage form for the treatment of relevant seizure disorders.
24

Design, development and evaluation of encapsulated oral controlled release theophylline mini-tablets

Munday, Dale Leslie January 1991 (has links)
Conventional solid dosage forms often lead to fluctuations which exceed the maximum safe therapeutic level and/or decline below the minimum effective level. It is recognised that many drugs for chronic administration should be administered on a schedule that maintains plasma drug concentration within the therapeutic window. Research in controlled release dosage forms aims at designing a system with a zero-order input (eg, ideally to deliver 8.33% of the dose per hour over a 12 hour duration), producing steady state plasma drug levels. Oral dministration of drugs prepared as a controlled release formulation is extremely popular, and has attracted the attention of pharmaceutical scientists during the last decade. This has been due to the simultaneous convergence of various factors (eg, discovery of novel polymers and devices, better understanding of formulation and physiological constraints, expiration of existing patents, prohibitive cost of developing new drug entities), involved in the development of these delivery systems. Controlled release oral products can be formulated as single or multiple unit dosage forms and the relative merits of multiple unit forms with their own rate controlling systems are well established. This work describes the development of a relatively inexpensive multiple-unit capsule dosage form of theophylline containing coated mini-tablets for drug delivery throughout the gastrointestinal tract. Preformulation studies on theophylline anhydrous included solubility and dissolution rate determinations. Techniques including X-ray powder diffraction, differential scanning colorimetry and infrared spectroscopy provided no evidence of true polymorphism after recrystallisation from various solvents. However, scanning electron micrographs showed the effects of solvent polarity and cooling rate on the size and shape of recrystallised particles. Theophylline granules were manufactured by using various binders and were film coated by fluidised bed technology with various proportions of ethylcellulose, containing varying amounts of PEG 1540. In vitro release rates were dependent upon coating thickness and the proportion of PEG, which, being water soluble, created pores in the coating during dissolution studies as observed by a scanning electron microscope. However, substantial proportions of the drug remained unreleased from the granules. In order to overcome the problems of drug retention, plain granules were used and theophylline mini-tablets (3 mm diameter, weighing 15 - 20 mg) were manufactured and film coated with various Eudragits ® and other polymeric mixtures (soluble and insoluble). In vitro dissolution profiles from samples enclosed in hard gelatin capsules were determined using the USPXXI paddle apparatus in test media at pH 1.2 (HCI), pH 5.4 and 7.4 (phosphate buffers) at 37'C. Monitoring of in vitro theophylline release over 12 h, under identical hydrodynamic conditions, showed that the dissolution rate at pH 1.2 is substantially greater (95% of total drug content released in < 10 h) than that in phosphate buffers. The maximum release after 12 h was approximately 20 and 30% of total drug content of the tablet at pH 5.4 and 7.4, respectively. However, in vivo bioavailability after oral administration of tablets to rabbits corresponded to over 95% of total drug, compared with the same dose administered intravenously. The retarded drug release during in vitro dissolution in phosphate buffer was attributed to a possible interaction of phosphate ions with theophylline molecules at the tablet core-coat interface. These findings indicate that both rate and extent of theophylline release from the slow release coated mini-tablets are highly sensitive to phosphate buffers. The data also emphasise the usefulness of an animal model for assessment of in vivo drug release and subsequent absorption during the development of modified release dosage forms. Mini-tablets were subjected to isothermal and cyclic stresses to reach conditions for up to 6 months at different temperatures and relative humidity. The film integrity was maintained but ageing of the coating occurred which impeded dissolution. Reduced drug release was temperature related while the effect of relative humidi% was insignific~t. Encapsulated mini-tablets (uncoated and coated with Eudragit RL and RS 2% w/w) equivalent to a 300 mg dose, were evaluated both in vitro and in vivo using beagle dogs. The pharmacokinetic parameters from single and multiple dose studies showed several advantages over Theo-Dur® 300 mg tablets. Precise dosage titration is possible by careful adjustment of the number of encapsulated mini-tablets. This multiple unit mini-tablet delivery system will allow for greater flexibility in dosage adjustment compared to the currently available preparations, allowing individualised fine dose titration in those patients requiring therapeutic drug monitoring. The developmentof the multiple unit mini-tablet formulation appears to provide an optimal dosage form with maximum flexibility in respect of dose, duration range and ease of production.
25

Investigating the effect of various film-forming polymers on the evaporation rate of a volatile component in a cosmetic formulation

Barnard, Carla January 2010 (has links)
The topical application of many substances, including drugs, enzymes, moisturizers and fragrances, contributes largely to the cosmetic and pharmaceutical industries. These components are often volatile in nature and dissipate in a matter of hours. When considering the different types of slow release systems, an overwhelming variety of these systems is available. Each one of the systems is unique in a way, and is designed to perform a particular function, whether it facilitates the controlled release of an active into the body via the skin surface (transdermal delivery) or whether it reduces the rate of loss of an active from the skin surface to the surrounding environment. For the purpose of this study, a previously existing fixative formulation which is believed to reduce the rate of loss of an active component to the environment, through film formation on the skin surface, was investigated. Alternative ingredients or components were incorporated together with the original fixative formulation ingredients into an experimental design which investigates the effect of each group of the components present. 18 formulations with various concentrations of the components within the groups and specified upper and lower limits for each component were formulated. The fixative properties of the formulations were analysed through the incorporation of a fixed amount of a simple fragrance molecule, 4- methoxybenzaldehyde, into each formulation and evaporation studies were conducted in an environmental room at 28±1° C over a period of 5 hours followed by gas chromatography analysis and finally data analyses using statistical methods. The most efficient fixative formulation was established using regression analysis. The fragrance compound in this formulation was found to evaporate at a rate of 0.47 g/L per hour. The least efficient fixative formulation lead to the loss of 0.78 g/L of the fragrance component per hour. From the calculated fragrance concentrations, the rate constant for each individual fixative formulation could be calculated and response surface 8 modelling by backward regression was used in order to determine how each component contributes to the rate of loss of the fragrance compound. Since the sum of the original ingredient and its alternative was constant, each of the original ingredients was coupled directly to its alternative and no conclusion could be made about the contribution of individual components. By increasing the concentration of Hydroxypropylcellulose (HPC) 100K and its alternative HPC 140K, while keeping the effects of the other components constant, a decrease in the rate of fragrance loss was observed. The same conclusion could be made when increasing the concentrations of PEG-12 Dimethicone and its alternative cetyl dimethicone (decreases the evaporation rate). An interaction took place between HPC 100K and PEG-12 dimethicone and their alternatives. The negative effect was, however, not as strong as the combined positive effect on the rate of fragrance loss of the individual components HPC and PEG-12 dimethicone. Evidence suggested that the removal of the components polyvinylpyrrolidone and its alternative, polyurethane-32 (Baycusan® C1003), would improve the effectiveness of the fixative formulation in terms of its slow release properties. A confirmation experiment established that the exclusion of these components from the fixative formulation does improve the “slow release” properties thereof. A larger, more intricate design is required to investigate the effect of each one of the individual components and where the sum of the components (original and its alternative) is not constant.
26

Stimuli-responsive microgels for self-assembled crystalline structures and controlled drug release.

Zhou, Jun 08 1900 (has links)
Tissue response to PNIPAM and HPC nanoparticles has been studied by implantation method. The results suggest that both PNIAPM and HPC nanoparticles possess good biocompatibility and they may serve as a good carrier for the applications of controlled delivery. Rheological properties of dispersions of IPN microgels composed of PNIPAM and PAAc have been studied. It is found that the IPN microgel dispersion can undergo a sol-gel transition at temperature above 33°C. In vivo drug release experiments suggest that the gelation procedure creates a diffusion barrier and thus leads to slow release. An emulsion method has been used to grow columnar crystals by mixing PNIPAM microgel dispersions with organic solvents. Effect of both temperature and microgel concentration on formation of columnar crystals has been studied. PNIPAM-co-NMA microgels have been used for the fabrication of crystalline hydrogel films by self-crosslinking microgels. The hydrogel film exhibits an iridescent. The thermally responsive properties and mechanical properties of this film have been studied. Melting temperature (Tm) of colloidal crystals self-assembled with PNIPAM-co-AAc microgels has been investigated as a function of pH, salt concentration and microgel concentration. It is revealed that Tm increases as pH value increases; Tm decreases with increase of salt concentration; Tm increases as microgel concentration increases. Phase behavior of PNIPAM-co-HEAc microgel dispersions has been investigated. It is observed that these microgel dispersions exhibit liquid, crystal, and glass phase. As microgel size increases, crystal phase shifts to low concentration range. As temperature increases, crystal phase shifts to high concentration ranges. These colloidal crystals can be stabilized by NaOH-induced gelation. Effect of NaOH concentration on formation of physical gelation has been investigated.
27

Development of a sustained-release microsphere formulation for delicate therapeutic proteins using a novel aqueous-aqueous emulsion technology.

January 2008 (has links)
Zhang, Xinran. / Thesis submitted in: December 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 80-87). / Abstracts in English and Chinese. / TITLE PAGE --- p.i / ABSTRACT --- p.ii / 中文摘要 --- p.v / ACKNOWLEDGEMENTS --- p.vii / TABLE OF CONTENTS --- p.viii / LIST OF FIGURES --- p.xi / LIST OF TABLES --- p.xiv / ABBREVIATIONS --- p.xv / Chapter CHAPTER 1. --- Introduction / Chapter 1.1. --- Rationale of the Study --- p.1 / Chapter 1.2. --- Current technologies for formulating long-acting parenteral protein deliver system --- p.3 / Chapter 1.2.1. --- Chemical Modification --- p.3 / Chapter 1.2.2. --- Sustained-release formulation --- p.4 / Chapter 1.2.2.1. --- Phase separation method --- p.4 / Chapter 1.2.2.2. --- Solvent evaporation/extraction method --- p.5 / Chapter 1.2.2.3. --- Spray drying method --- p.6 / Chapter 1.2.2.4. --- Causes for protein instability --- p.6 / Chapter 1.2.2.4.1. --- Water/organic solvent interface --- p.6 / Chapter 1.2.2.4.2. --- Lyophilization --- p.8 / Chapter 1.2.2.4.3. --- Polymer --- p.11 / Chapter 1.2.2.4.4. --- Stabilizing additive --- p.13 / Chapter 1.3. --- Aqueous-aqueous emulsion technology --- p.17 / Chapter 1.3.1. --- Background --- p.17 / Chapter 1.3.2. --- Basic Principle --- p.17 / Chapter 1.3.3. --- Phase diagram --- p.18 / Chapter 1.3.4. --- Formation of aqueous-aqueous emulsion --- p.19 / Chapter 1.3.4.1. --- Introduction of a water-soluble charged polymer as stabilizer --- p.19 / Chapter 1.3.4.2. --- Freezing-induced phase separation --- p.20 / Chapter 1.3.5. --- General Protocol --- p.21 / Chapter 1.3.5.1. --- Introduction of a water-soluble charged polymeric stabilizer --- p.22 / Chapter 1.3.5.2. --- Freezing-induced phase separation --- p.22 / Chapter 1.3.6. --- Merits and limitations of the aqueous-aqueous emulsion technology --- p.23 / Chapter 1.3.7. --- Protein selection for the sustained release formulation --- p.25 / Chapter 1.4. --- Aims and scope of study --- p.26 / Chapter "CHAPTER 2," --- Materials and Methods / Chapter 2.1. --- Materials --- p.28 / Chapter 2.1.1. --- Proteins --- p.28 / Chapter 2.1.2. --- Polymers --- p.28 / Chapter 2.1.3. --- Media for TF-1 Cell Culture --- p.28 / Chapter 2.1.4. --- Chemicals and Solvents for Cell Proliferation Assay --- p.29 / Chapter 2.1.5. --- Other Chemicals and Solvents --- p.29 / Chapter 2.1.6. --- Materials for Cell Culture --- p.29 / Chapter 2.1.7. --- Materials for Reagent Kits --- p.30 / Chapter 2.2. --- Methods --- p.30 / Chapter 2.2.1. --- Determination of the Partition Coefficients of Proteins Between PEG and Dextran --- p.30 / Chapter 2.2.2. --- Preparation of Glassy Particles --- p.31 / Chapter 2.2.2.1. --- Standard Stable Aqueous-aqueous Emulsion Method --- p.31 / Chapter 2.2.2.2. --- Freezing-induced Phase Separation --- p.32 / Chapter 2.2.3. --- Preparation of Protein-loaded and Blank Microspheres Using S-o-w Solvent Extraction Technique --- p.32 / Chapter 2.2.4. --- Optical Microscopy and Scanning Electron Microscopy --- p.33 / Chapter 2.2.5. --- Determination of Protein Loading --- p.34 / Chapter 2.2.5.1. --- Within Dextran Particles --- p.34 / Chapter 2.2.5.2. --- Within PLGA microspheres --- p.34 / Chapter 2.2.6. --- Evaluation of Protein Structural Integrity and Bioactivity in Dextran Particles and PGLA Microspheres --- p.35 / Chapter 2.2.7. --- In vitro Release Study --- p.36 / Chapter 2.2.8. --- RhIFN Stability Determination under Simulated In Vitro Release Conditions --- p.37 / Chapter 2.2.8.1. --- In the Absence of PLGA --- p.37 / Chapter 2.2.8.2. --- In the Presence of PLGA --- p.37 / Chapter 2.2.9. --- MicroBCÁёØ Protein Assay --- p.38 / Chapter 2.2.10. --- Size Exclusion Chromatography (SEC) - High Performance Liquid Chromatography (HPLC) --- p.38 / Chapter 2.2.11. --- ELISA --- p.39 / Chapter 2.2.12. --- Bioactivity Assay --- p.40 / Chapter 2.2.12.1. --- RhIFN --- p.40 / Chapter 2.2.12.2. --- RhGM-CSF --- p.41 / Chapter CHAPTER 3. --- Results and Discussions / Chapter 3.1. --- Sustained-release RhIFN Formulation --- p.45 / Chapter 3.1.1. --- Partition Coefficient of RhIFN --- p.45 / Chapter 3.1.2. --- Formulation Based on the Standard Aqueous-aqueous Emulsion (SA-AE) Method With Sodium Alginate as Stabilizer --- p.45 / Chapter 3.1.2.1. --- Surface Morphology --- p.45 / Chapter 3.1.2.2. --- Formulation Characterization --- p.46 / Chapter 3.1.2.3. --- In Vitro Release of RhIFN from PLGA Microsheres --- p.54 / Chapter 3.1.3. --- Formulation Based on the Freezing-induced Phase Separation (FIPS) Technique without Sodium Alginate --- p.56 / Chapter 3.1.3.1. --- Formulation Characterization --- p.56 / Chapter 3.1.3.2. --- In Vitro Release of RhIFN from PGLA Microsphees --- p.59 / Chapter 3.2. --- RhIFN Stability Assessment under Simulated In Vitro Release Conditions --- p.63 / Chapter 3.2.1. --- In the Absence of PLGA --- p.63 / Chapter 3.2.2. --- In the Presence of PLGA --- p.65 / Chapter 3.3. --- Sustained-release RhGM-CSF Formulation --- p.68 / Chapter 3.3.1. --- Partition Coefficient Determination of RhGM-CSF Between PEG and Dextran --- p.68 / Chapter 3.3.2. --- Formulation Based on Freezing-induced Phase Separation --- p.68 / Chapter 3.3.2.1. --- Validation of MTT Assay Conditions --- p.69 / Chapter 3.3.2.2. --- Formulation Characterization --- p.71 / Chapter 3.3.2.3. --- In Vitro Release of RhGM-CSF from PLGA Microspheres --- p.75 / Chapter CHAPTER 4. --- Conclusion and Future Studies / Chapter 4.1. --- Conclusion --- p.78 / Chapter 4.2. --- Future Studies --- p.79 / References --- p.80
28

1) Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating method 2) Pharmacokinetic modeling and Monte Carlo simulations in context of additional criteria for bioequivalence assessments 3) Pharmacokinetic prediction of levofloxacin accumulation in tissue and its association to tendinopathy

Pham, Loan 07 June 2014 (has links)
The thrust of this thesis is to study oral solid dosage formulation using hot melt coating method and to use pharmacokinetic modeling and simulation (PK M&S) as a tool that can help to predict pharmacokinetics of a drug in human and the probability of passing various bioequivalence criteria of the formulation based on the PK of the drug. Hot-melt coating using a new method, direct blending, was performed to create immediate and sustained release formulations (IR and SR). This new method was introduced to offer another choice to produce IR and SR drug delivery formulations using single and double coating layer of waxes onto sugar beads and/or drug loaded pellets. Twelve waxes were applied to coat sugar cores. The harder the wax the slower the drug was released from single coated beads. The wax coating can be deposited up to 28% of the weight of the core bead with 58% drug loading efficiency in the coating The cores were coated with single or double wax layers containing acetaminophen. Carnauba wax coated beads dissolved in approximately 6 hrs releasing 80% of loaded drug. However, when covered with another layer, the drug loaded beads released drug for over 20 hrs. When drug loaded pellets were used as cores, 33-58% drug loading was achieved. Double coated pellets exhibited a near zero order drug release for up to 16 hrs. Hot melt coating by direct blending using waxes is a simple process compared to conventional hot melt coating using coating pan or fluid bed coating machines. It offers an alternative way of making immediate, sustained drug release (IR, SR) and modified release (IR+SR) oral dosage forms of drugs which are stable at high temperature (100°C). The pellet-containing-drug coated formulations provide options when higher drug loading is warranted. It is required by the US Food and Drug Administration (FDA) that a new modified –release (MR) product or identical generic product be regarded as bioequivalent (BE) to the originators reference drug product. However, there are concerns that current regulatory criteria are not sufficient when evaluating bioequivalence (BE) for many MR products, and additional metrics for BE assessment of the products should be applied to ensure therapeutic equivalence. This study used pharmacokinetic modeling and simulation (M&S) to investigate 1) the probability of BE occurring between the MR test and reference products 2) the rates of false positive and true negative of the BE test; and 3) the estimation of the sample size in pivotal BE studies; all of which when partial area under the curves (pAUCs) were applied as additional BE criteria. Reference data of two MR forms of methylphenydate HCl (MPH) were simulated and obtained from literature (formulation Q and Metadate CD, respectively). Monte Carlo simulations were performed to simulate the test drug concentration profiles and BE assessment was carried out utilizing the mean (method 1) and individual concentration time curves (method 2). For formulation Q, adding pAUC₀₋[subscript Tmax] to current BE criteria reduced the possibility of passing BE from approximately 98% to 85%, with a true negative rate of 5%. The earlier the time points used to determine for pAUC before Tmax, the lower the chance of passing BE for the test product. The possibility of passing BE varied and depended on the coefficient of variations (CV) of T[subscript lag], K[subscript a] and K[subscript e] and that considerable variability in the parameters affected the earlier segments of the drug concentration profile curves more. Similar drug concentration time profiles between the test and reference products is recommended to ensure bioequivalence occurs with a reasonable subject sample size. A similar scenario was seen when Metadate CD was used as the reference product. PK M&S can help provide appropriate additional metrics to assure the BE test is a better tool ensuring therapeutic equivalence for MR products with little negative impact to generic manufacturers. Predictions can also be made about the required sample size and the chances of passing BE with any addition to the conventional three criteria for the test product. PK M&S was also used to predict drug concentrations of levofloxacin in tissue. Levofloxacin has been widely used in clinical practice as an effective broad-spectrum antimicrobial, however tendonitis and tendon rupture have been reported with increasing use of this agent. Here, these incidents will be assessed by investigating pharmacokinetic behavior of the compound to see if they are related to drug's tissue disposition. The PK model for levofloxacin was established. Mean concentration time profiles of single or multiple dosing of 500 mg levofloxacin following oral and IV infusion administration were simulated. Monte Carlo simulation was used to simulate the drug concentration time profiles in plasma (compartment 1) and tissue (compartment 2) after seven dosing regimens while varying the drug's elimination and distribution rates to see the effect of changing those rates have on the drug accumulation in tissue. Monte Carlo Simulation shows that low elimination rates affect the drug concentration in plasma and tissue significantly with the level in plasma rising up to 35 μg/mL at day 7. A normal elimination rate together with escalation of distribution rates from plasma to tissue could increase the tissue concentration after 7 doses to 9.5 µg/mL, a value that is more than twice that of normal. PK M&S can be used as an effective tool to evaluate drug concentration in different compartments (plasma and tissues, for example). The unexpectedly high concentration values in some cases may explain, at least in part, the reason of tendinopathy occurs in the clinical setting. / Graduation date: 2012 / Access restricted to the OSU Community at author's request from June 7, 2012 - June 7, 2014
29

The use of response surface methodology and artificial neural networks for the establishment of a design space for a sustained release salbutamol sulphate formulation

Chaibva, Faith Anesu January 2010 (has links)
Quality by Design (QbD) is a systematic approach that has been recommended as suitable for the development of quality pharmaceutical products. The QbD approach commences with the definition of a quality target drug profile and predetermined objectives that are then used to direct the formulation development process with an emphasis on understanding the pharmaceutical science and manufacturing principles that apply to a product. The design space is directly linked to the use of QbD for formulation development and is a multidimensional combination and interaction of input variables and process parameters that have been demonstrated to provide an assurance of quality. The objective of these studies was to apply the principles of QbD as a framework for the optimisation of a sustained release (SR) formulation of salbutamol sulphate (SBS), and for the establishment of a design space using Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). SBS is a short-acting ♭₂ agonist that is used for the management of asthma and chronic obstructive pulmonary disease (COPD). The use of a SR formulation of SBS may provide clinical benefits in the management of these respiratory disorders. Ashtalin®8 ER (Cipla Ltd., Mumbai, Maharashtra, India) was selected as a reference formulation for use in these studies. An Ishikawa or Cause and Effect diagram was used to determine the impact of formulation and process factors that have the potential to affect product quality. Key areas of concern that must be monitored include the raw materials, the manufacturing equipment and processes, and the analytical and assessment methods employed. The conditions in the laboratory and manufacturing processes were carefully monitored and recorded for any deviation from protocol, and equipment for assessment of dosage form performance, including dissolution equipment, balances and hardness testers, underwent regular maintenance. Preliminary studies to assess the potential utility of Methocel® Kl OOM, alone and in combination with other matrix forming polymers, revealed that the combination of this polymer with xanthan gum and Carbopol® has the potential to modulate the release of SBS at a specific rate, for a period of 12 hr. A central composite design using Methocel® KlOOM, xanthan gum, Carbopol® 974P and Surelease® as the granulating fluid was constructed to fully evaluate the impact of these formulation variables on the rate and extent of SBS release from manufactured formulations. The results revealed that although Methocel® KlOOM and xanthan gum had the greatest retardant effect on drug release, interactions between the polymers used in the study were also important determinants of the measureable responses. An ANN model was trained for optimisation using the data generated from a central composite study. The efficiency of the network was optimised by assessing the impact of the number of nodes in the hidden layer using a three layer Multi Layer Perceptron (MLP). The results revealed that a network with nine nodes in the hidden layer had the best predictive ability, suitable for application to formulation optimisation studies. Pharmaceutical optimisation was conducted using both the RSM and the trained ANN models. The results from the two optimisation procedures yielded two different formulation compositions that were subjected to in vitro dissolution testing using USP Apparatus 3. The results revealed that, although the formulation compositions that were derived from the optimisation procedures were different, both solutions gave reproducible results for which the dissolution profiles were indeed similar to that of the reference formulation. RSM and ANN were further investigated as possible means of establishing a design space for formulation compositions that would result in dosage forms that have similar in vitro release test profiles comparable to the reference product. Constraint plots were used to determine the bounds of the formulation variables that would result in the manufacture of dosage forms with the desired release profile. ANN simulations with hypothetical formulations that were generated within a small region of the experimental domain were investigated as a means of understanding the impact of varying the composition of the formulation on resultant dissolution profiles. Although both methods were suitable for the establishment of a design space, the use of ANN may be better suited for this purpose because of the manner in which ANN handles data. As more information about the behaviour of a formulation and its processes is generated during the product Iifecycle, ANN may be used to evaluate the impact of formulation and process variables on measureable responses. It is recommended that ANN may be suitable for the optimisation of pharmaceutical formulations and establishment of a design space in line with ICH Pharmaceutical Development [1], Quality Risk Management [2] and Pharmaceutical Quality Systems [3]
30

Développement de formes orales divisées à libération prolongée par la technique de la pellétisation thermoplastique

Hamdani, Jamila 21 June 2005 (has links)
L’étude des caractéristiques physico-chimiques du Compritol® (béhénate de glycérol) et du Précirol® (palmito-stéarate de glycérol) a été effectuée. Les méthodes d’évaluation consistaient en la calorimétrie différentielle à balayage, la microscopie sur platine chauffante et la rhéologie dans un rhéomètre capillaire à pression variable. Cette étude a montré une évolution de la structure cristalline de ces deux corps gras en fonction du temps et de la température de stockage. En effet, ces composés, après fusion et refroidissement, « recristallisent » sous une structure partiellement amorphe, qui évolue avec le temps en structure cristalline. Il est également ressorti de cette évaluation que ces deux excipients lipidiques présentent des plages de fusion bien distinctes. Cette caractéristique est conservée lorsqu’ils sont en mélanges binaires. Enfin, ces corps gras se déforment sous l’action de fortes forces de cisaillement à des températures inférieures à leurs plages de fusion. <p>L’utilisation du Compritol® et du Précirol® comme corps gras lipophiles pour former des microbilles à libération prolongée a alors été envisagée. Nous avons procédé moyennant une technique de fabrication simple et rapide appelée « la pelletisation thermoplastique ». Il s’agit d’un procédé en une étape qui met à profit le pouvoir liant des corps gras facilement fusibles et se passe ainsi de l’usage de l’eau ou de solvants organiques. L’appareillage utilisé est de type mélangeur granulateur à haute vitesse. <p>Nous nous sommes basés sur les renseignements fournis par l’étude de préformulation afin d’optimaliser les conditions de fabrication des microbilles. Le contrôle de la température du mélange est très important pour la réussite du procédé de pelletisation thermoplastique. La vitesse du bras du mélangeur, la température de la double paroi et le temps de sphéronisation constituent les paramètres clés pour réussir la pelletisation du mélange. Nous avons mis au point des formulations contenant 15% (m/m) de Précirol® et une quantité croissante de Compritol® variant de 3 à 65 % (m/m). La libération du chlorhydrate de phényléphrine, employé comme agent traceur, a déjà été ralentie pour les formulations contenant 25 % (m/m) de corps gras. Face à ces résultats encourageants, nous avons mis au point des formulations contenant 75 % (m/m) de différents principes actifs (chlorhydrate de ciprofloxacine, théophylline et kétoprofène) et 25 % (m/m) de corps gras. Ces formulations ont abouti à la fabrication de microbilles à libération prolongée. Une étude de stabilité menée sur certaines des formes finies a montré la stabilité des microbilles lipidiques pour autant que le principe actif incorporé dedans ne soit par lui-même facilement dégradable. <p>Afin d’élargir le champ d’application du procédé de fabrication, nous avons mis au point des microbilles flottantes à libération prolongée. Les formulations proposées contiennent comme excipients :les deux corps gras, un mélange effervescent (bicarbonate sodique/ acide tartrique) et du Methocel K100. Leur flottabilité a été prouvée in vitro sur une période de plus de huit heures et In vivo par administration de microbilles de riboflavine flottantes versus non flottantes à des volontaires humains sains.<p> / Doctorat en Sciences biomédicales et pharmaceutiques / info:eu-repo/semantics/nonPublished

Page generated in 0.1079 seconds