• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 11
  • 11
  • 11
  • 9
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bioaccumulation of Triclocarban, Triclosan, and Methyl-triclosan in a North Texas Wastewater Treatment Plant Receiving Stream and Effects of Triclosan on Algal Lipid Synthesis.

Coogan, Melinda Ann 08 1900 (has links)
Triclosan (TCS) and triclocarban (TCC), widely used antimicrobial agents found in numerous consumer products, are incompletely removed by wastewater treatment plant (WWTP) processing. Methyl-triclosan (M-TCS) is a more lipophilic metabolite of its parent compound, TCS. The focus of this study was to quantify bioaccumulation factors (BAFs) for TCS, M-TCS, and TCC in Pecan creek, the receiving stream for the City of Denton, Texas WWTP by using field samples mostly composed of the alga Cladophora sp. and the caged snail Helisoma trivolvis as test species. Additionally, TCS effects on E. coli and Arabidopsis have been shown to reduce fatty acid biosynthesis and total lipid content by inhibiting the trans-2 enoyl- ACP reductase. The lipid synthesis pathway effects of TCS on field samples of Cladophora spp. were also investigated in this study by using [2-14C]acetate radiolabeling procedures. Preliminary results indicate high TCS concentrations are toxic to lipid biosynthesis and reduce [2-14C]acetate incorporation into total lipids. These results have led to the concern that chronic exposure of algae in receiving streams to environmentally relevant TCS concentrations might affect their nutrient value. If consumer growth is limited, trophic cascade strength may be affected and serve to limit population growth and reproduction of herbivores in these riparian systems.

Page generated in 0.0594 seconds