• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariable Interpolation Problems

Fang, Quanlei 30 July 2008 (has links)
In this dissertation, we solve multivariable Nevanlinna-Pick type interpolation problems. Particularly, we consider the left tangential interpolation problems on the commutative or noncommutative unit ball. For the commutative setting, we discuss left-tangential operator-argument interpolation problems for Schur-class multipliers on the Drury-Arveson space and for the noncommutative setting, we discuss interpolation problems for Schur-class multipliers on Fock space. We apply the Krein-space geometry approach (also known as the Grassmannian Approach). To implement this approach J-versions of Beurling-Lax representers for shift-invariant subspaces are required. Here we obtain these J-Beurling-Lax theorems by the state-space method for both settings. We see that the Krein-space geometry method is particularly simple in solving the interpolation problems when the Beurling-Lax representer is bounded. The Potapov approach applies equally well whether the representer is bounded or not. / Ph. D.
2

Positive definite kernels, harmonic analysis, and boundary spaces: Drury-Arveson theory, and related

Sabree, Aqeeb A 01 January 2019 (has links)
A reproducing kernel Hilbert space (RKHS) is a Hilbert space $\mathscr{H}$ of functions with the property that the values $f(x)$ for $f \in \mathscr{H}$ are reproduced from the inner product in $\mathscr{H}$. Recent applications are found in stochastic processes (Ito Calculus), harmonic analysis, complex analysis, learning theory, and machine learning algorithms. This research began with the study of RKHSs to areas such as learning theory, sampling theory, and harmonic analysis. From the Moore-Aronszajn theorem, we have an explicit correspondence between reproducing kernel Hilbert spaces (RKHS) and reproducing kernel functions—also called positive definite kernels or positive definite functions. The focus here is on the duality between positive definite functions and their boundary spaces; these boundary spaces often lead to the study of Gaussian processes or Brownian motion. It is known that every reproducing kernel Hilbert space has an associated generalized boundary probability space. The Arveson (reproducing) kernel is $K(z,w) = \frac{1}{1-_{\C^d}}, z,w \in \B_d$, and Arveson showed, \cite{Arveson}, that the Arveson kernel does not follow the boundary analysis we were finding in other RKHS. Thus, we were led to define a new reproducing kernel on the unit ball in complex $n$-space, and naturally this lead to the study of a new reproducing kernel Hilbert space. This reproducing kernel Hilbert space stems from boundary analysis of the Arveson kernel. The construction of the new RKHS resolves the problem we faced while researching “natural” boundary spaces (for the Drury-Arveson RKHS) that yield boundary factorizations: \[K(z,w) = \int_{\mathcal{B}} K^{\mathcal{B}}_z(b)\overline{K^{\mathcal{B}}_w(b)}d\mu(b), \;\;\; z,w \in \B_d \text{ and } b \in \mathcal{B} \tag*{\it{(Factorization of} $K$).}\] Results from classical harmonic analysis on the disk (the Hardy space) are generalized and extended to the new RKHS. Particularly, our main theorem proves that, relaxing the criteria to the contractive property, we can do the generalization that Arveson's paper showed (criteria being an isometry) is not possible.
3

Spectra of Composition Operators on the Unit Ball in Two Complex Variables

Michael R Pilla (8882636) 15 June 2020 (has links)
Let <i>φ</i> be a self-map of <b>B</b><sub>2</sub>, the unit ball in <b>C</b><sup>2</sup>. We investigate the equation <i>C<sub>φ</sub>f</i>=<i>λf</i> where we define <i>C<sub>φ</sub>f </i>: -<i>f◦φ</i>, with <i>f a</i> function in the Drury Arves on Space. After imposing conditions to keep <i>C<sub>φ</sub></i> bounded and well-behaved, we solve the equation <i>C<sub>φ</sub>f - λf </i>and determine the spectrum <i>σ</i>(<i>C<sub>φ</sub></i>) in the case where there is no interior fixed point and boundary fixed point without multiplicity. We then investigate the existence of one-parameter semigroups for such maps and discuss some generalizations.

Page generated in 0.0485 seconds