• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental Analysis And Modelling Of Wear In Rocket Rail Launchers

Acmaz, Emre 01 January 2012 (has links) (PDF)
Launchers are military systems that are responsible for communication with munitions, safe seperation and aiming of rockets and missiles to the target. Since they are military equipments, they are used in harsh environments. One of the most important design considerations for military equipment is its maintability and one of the most important parameter which affects the maintability is wear in launchers. Therefore, for predicting the life-time of a launcher, wear should be investigated beside other parameters such as fatigue etc. This thesis study includes experimental and modeling study about dry sliding wear in some mechanical parts of a typical rail launcher that is used in helicopters. Firstly, measurements about the material loss, which is generated during firing of missiles, were made on launcher components which have interfaces with missile. Then, these results were used to simulate the wear phenomenon by using a commercial finite element program, ANSYS. By the help of finite element model, crack initiation period depending on wear is tried to be evaluated without making additional firing tests.
2

Room and Elevated Temperature Sliding Wear Behavior of Cold Sprayed Ni-WC Composite Coatings

Torgerson, Tyler B. 08 1900 (has links)
The tribological properties of cold sprayed Ni-WC metal matrix composite (MMC) coatings were investigated under dry sliding conditions from room temperature (RT) up to 400°C, and during thermal cycling to explore their temperature adaptive friction and wear behavior. Characterization of worn surfaces was conducted using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy to determine the chemical and microstructural evolution during friction testing. Data provided insights into tribo-oxide formation mechanisms controlling friction and wear. It was determined that the steady-state coefficient of friction (CoF) decreased from 0.41 at RT to 0.32 at 400˚C, while the wear rate increased from 0.5×10-4 mm3/N·m at RT to 3.7×10-4 mm3/N·m at 400˚C. The friction reduction is attributed primarily to the tribochemical formation of lubricious NiO on both the wear track and transfer film adhered to the counterface. The increase in wear is attributed to a combination of thermal softening of the coating and a change in the wear mechanism from adhesive to more abrasive. In addition, the coating exhibited low friction behavior during thermal cycling by restoring the lubricious NiO phase inside the wear track at high temperature intervals. Therefore, cold sprayed Ni-WC coatings are potential candidates for elevated temperature and thermally self-adaptive sliding wear applications.
3

Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests. / Transição de desgaste severo-moderado de diferentes tribosistemas de ação contra ação durante ensaios reciprocantes a seco-disco-esfera.

Correa Saldarriaga, Pablo Alejandro 16 April 2018 (has links)
The main motivation of this doctoral thesis is to extend the current knowledge about the tribological behavior of a precipitation-hardenable (PH) austenitic stainless steel (SAE XEV-F or DIN 1.4882), used for manufacturing exhaust valves for internal combustion engines in passenger cars. For this purpose, dry sliding laboratory tests were carried out using this steel and other steels, mainly austenitic and martensitic, used as model materials for the comparative characterization of wear and friction. Experimental tests were conducted using an SRV®4 tribometer in a ball-on-disc configuration with reciprocating movement, in which the discs were the samples and the balls the counter-bodies. Four kinds of steels were tested: a) AISI 310, b) SAE XEV-F, c) AISI H13, and d) Nitrided SAE XEV-F. The ball was made of AISI 52100 bearing steel. The tests were conducted at room temperature and fixed conditions of time (sliding distance) (up to 73.2 m), load (100 N), frequency (10 Hz) and stroke (2mm). Wear was evaluated by means of mass loss in the disc and the ball, and post examination of the worn surfaces. Post examination was conducted using scanning electron microscopy (SEM), coherence correlation interferometry (CCI), and X-Ray diffraction (XRD). Wear debris resulting from tribological interaction were also investigated using SEM and XRD. Additionally, the friction coefficient was measured. High speed filming and interrupted tests were also performed at specific sliding distances. This work reports a severe-to-mild wear transition occurring during the first stage of tribological interaction (running-in) and its relation to the load distribution variation at the interface throughout the tribological tests. The wear transition was observed in different steel-on-steel tribosystems in ball-on-disc contact configuration and occurred due to the combined effects of two factors: a) the contact pressure reduction, due to the increase of nominal contact area caused by wear; and b) subsurface strain hardening (when relevant). The pressure/distance variation was determined experimentally and modeled empirically. Subsurface strain hardening was observable (and measurable) mainly the austenitic steels. Significant differences in wear (and friction) were observed between homogeneous (monophasic) steels and the heterogeneous (multiphasic) SAE XEV-F valve steel. Wear in the homogeneous steels presented an inverse correlation with hardness. Wear on the AISI 310 presented non-linear wear rates for a significant portion of the test. Wear on the SAE XEV-F valve steel was pronounced (even in the mild regime) due to a combined effect of two factors: a) formation of hard debris, which induced an abrasive component to wear by relative sliding, and b) subsurface NbC fracture, which markedly affected the material removal due to plastic deformation in the surrounding matrix. Wear of the nitrided SAE XEV-F steel was lower than that of the non-nitrided samples by nearly two orders of magnitude. The benefits of nitriding in the SAE XEV-F were two-fold: a) an increased surface hardness, and b) the prevention of NbC fracture and detachment, which results in even higher wear resistance. / A principal motivação desta tese é ampliar o conhecimento atual sobre o comportamento tribológico de um aço inoxidável austenítico endurecível por precipitação (PH), o SAE XEV-F (ou DIN 1.4882), utilizado para a fabricação de válvulas de exaustão de motores de combustão interna para carros de passageiros. Para este propósito, foram realizados ensaios laboratoriais de deslizamento a seco usando este aço e outros, principalmente aços austeníticos e martensíticos, usados como materiais modelo para a caracterização comparativa do desgaste e do atrito. Os ensaios experimentais foram conduzidos usando um tribômetro SRV®4 em uma configuração esfera-disco com movimento alternado, em que os discos foram as amostras e as esferas são os contracorpos. Foram ensaiados quatro tipos de aços: a) AISI 310, b) SAE XEV-F, c) AISI H13, e d) SAE XEV-F nitretado. A esfera era feita de aço para rolamento AISI 52100. Os ensaios foram realizados a temperatura ambiente e usando condições fixas de tempo (distância total percorrida até 73.2 m), carga normal (100 N), frequência (10 Hz) e amplitude da oscilação (2 mm). O desgaste foi avaliado por meio de perda de massa, tanto do disco quanto da esfera, e exame das superfícies desgastadas utilizando microscopia eletrônica de varredura (MEV), interferometria de correlação de coerência (ICC) e difração de raios-X (DRX). Os debris de desgaste resultantes da interação tribológica também foram investigados usando MEV e DRX. Adicionalmente, a evolução do coeficiente de atrito foi analisada. Também foram realizadas filmagens de alta velocidade e ensaios interrompidos em tempos de deslizamento específicos. Este trabalho reporta uma transição de desgaste severo para moderado que ocorre durante as a primeira fase da interação tribológica (running-in) e sua relação com a variação da carga na interface durante os ensaios tribológicos. A transição de desgaste foi observada em diferentes tribo-sistemas de aço-contra-aço na configuração esfera-plano e ocorreu principalmente por efeitos combinados de dois fatores: a) a redução da pressão de contato, devida ao aumento da área nominal causada pelo desgaste; e b) o encruamento subsuperficial (quando relevante). A variação pressão/distância foi determinada experimentalmente e modelada empiricamente. Encruamento por deformação subsuperficial foi observável (e medível) principalmente nos aços austeníticos. Foram observadas diferenças significativas no desgaste (e atrito) entre os aços homogêneos (monofásicos) e o aço de válvula SAE XEV-F, heterogêneo (multifásico). O desgaste nos aços homogêneos apresentou uma correlação inversa com a dureza. O desgaste no aço válvula SAE XEV-F foi pronunciado (mesmo no regime de desgaste moderado) devido a um efeito combinado de dois fatores: a) a formação de debris duros, o que induziu uma componente abrasiva ao desgaste por deslizamento relativo, e b) a fratura subsuperficial do NbC, o que afetou significativamente a remoção de material devida à deformação plástica da matriz. O desgaste do aço nitretado SAE XEV-F foi menor que o das amostras não tratadas em quase duas ordens de grandeza. Os benefícios da nitretação no aço válvula SAE XEV-F foram dois: a) o aumento da dureza da superfície, e b) a prevenção da fratura e desprendimento de NbC, o que resulta em uma resistência de desgaste ainda maior.
4

Severe-to-mild wear transition during running-in of different steel-on-steel tribosystems in ball-on-disc dry sliding reciprocating tests. / Transição de desgaste severo-moderado de diferentes tribosistemas de ação contra ação durante ensaios reciprocantes a seco-disco-esfera.

Pablo Alejandro Correa Saldarriaga 16 April 2018 (has links)
The main motivation of this doctoral thesis is to extend the current knowledge about the tribological behavior of a precipitation-hardenable (PH) austenitic stainless steel (SAE XEV-F or DIN 1.4882), used for manufacturing exhaust valves for internal combustion engines in passenger cars. For this purpose, dry sliding laboratory tests were carried out using this steel and other steels, mainly austenitic and martensitic, used as model materials for the comparative characterization of wear and friction. Experimental tests were conducted using an SRV®4 tribometer in a ball-on-disc configuration with reciprocating movement, in which the discs were the samples and the balls the counter-bodies. Four kinds of steels were tested: a) AISI 310, b) SAE XEV-F, c) AISI H13, and d) Nitrided SAE XEV-F. The ball was made of AISI 52100 bearing steel. The tests were conducted at room temperature and fixed conditions of time (sliding distance) (up to 73.2 m), load (100 N), frequency (10 Hz) and stroke (2mm). Wear was evaluated by means of mass loss in the disc and the ball, and post examination of the worn surfaces. Post examination was conducted using scanning electron microscopy (SEM), coherence correlation interferometry (CCI), and X-Ray diffraction (XRD). Wear debris resulting from tribological interaction were also investigated using SEM and XRD. Additionally, the friction coefficient was measured. High speed filming and interrupted tests were also performed at specific sliding distances. This work reports a severe-to-mild wear transition occurring during the first stage of tribological interaction (running-in) and its relation to the load distribution variation at the interface throughout the tribological tests. The wear transition was observed in different steel-on-steel tribosystems in ball-on-disc contact configuration and occurred due to the combined effects of two factors: a) the contact pressure reduction, due to the increase of nominal contact area caused by wear; and b) subsurface strain hardening (when relevant). The pressure/distance variation was determined experimentally and modeled empirically. Subsurface strain hardening was observable (and measurable) mainly the austenitic steels. Significant differences in wear (and friction) were observed between homogeneous (monophasic) steels and the heterogeneous (multiphasic) SAE XEV-F valve steel. Wear in the homogeneous steels presented an inverse correlation with hardness. Wear on the AISI 310 presented non-linear wear rates for a significant portion of the test. Wear on the SAE XEV-F valve steel was pronounced (even in the mild regime) due to a combined effect of two factors: a) formation of hard debris, which induced an abrasive component to wear by relative sliding, and b) subsurface NbC fracture, which markedly affected the material removal due to plastic deformation in the surrounding matrix. Wear of the nitrided SAE XEV-F steel was lower than that of the non-nitrided samples by nearly two orders of magnitude. The benefits of nitriding in the SAE XEV-F were two-fold: a) an increased surface hardness, and b) the prevention of NbC fracture and detachment, which results in even higher wear resistance. / A principal motivação desta tese é ampliar o conhecimento atual sobre o comportamento tribológico de um aço inoxidável austenítico endurecível por precipitação (PH), o SAE XEV-F (ou DIN 1.4882), utilizado para a fabricação de válvulas de exaustão de motores de combustão interna para carros de passageiros. Para este propósito, foram realizados ensaios laboratoriais de deslizamento a seco usando este aço e outros, principalmente aços austeníticos e martensíticos, usados como materiais modelo para a caracterização comparativa do desgaste e do atrito. Os ensaios experimentais foram conduzidos usando um tribômetro SRV®4 em uma configuração esfera-disco com movimento alternado, em que os discos foram as amostras e as esferas são os contracorpos. Foram ensaiados quatro tipos de aços: a) AISI 310, b) SAE XEV-F, c) AISI H13, e d) SAE XEV-F nitretado. A esfera era feita de aço para rolamento AISI 52100. Os ensaios foram realizados a temperatura ambiente e usando condições fixas de tempo (distância total percorrida até 73.2 m), carga normal (100 N), frequência (10 Hz) e amplitude da oscilação (2 mm). O desgaste foi avaliado por meio de perda de massa, tanto do disco quanto da esfera, e exame das superfícies desgastadas utilizando microscopia eletrônica de varredura (MEV), interferometria de correlação de coerência (ICC) e difração de raios-X (DRX). Os debris de desgaste resultantes da interação tribológica também foram investigados usando MEV e DRX. Adicionalmente, a evolução do coeficiente de atrito foi analisada. Também foram realizadas filmagens de alta velocidade e ensaios interrompidos em tempos de deslizamento específicos. Este trabalho reporta uma transição de desgaste severo para moderado que ocorre durante as a primeira fase da interação tribológica (running-in) e sua relação com a variação da carga na interface durante os ensaios tribológicos. A transição de desgaste foi observada em diferentes tribo-sistemas de aço-contra-aço na configuração esfera-plano e ocorreu principalmente por efeitos combinados de dois fatores: a) a redução da pressão de contato, devida ao aumento da área nominal causada pelo desgaste; e b) o encruamento subsuperficial (quando relevante). A variação pressão/distância foi determinada experimentalmente e modelada empiricamente. Encruamento por deformação subsuperficial foi observável (e medível) principalmente nos aços austeníticos. Foram observadas diferenças significativas no desgaste (e atrito) entre os aços homogêneos (monofásicos) e o aço de válvula SAE XEV-F, heterogêneo (multifásico). O desgaste nos aços homogêneos apresentou uma correlação inversa com a dureza. O desgaste no aço válvula SAE XEV-F foi pronunciado (mesmo no regime de desgaste moderado) devido a um efeito combinado de dois fatores: a) a formação de debris duros, o que induziu uma componente abrasiva ao desgaste por deslizamento relativo, e b) a fratura subsuperficial do NbC, o que afetou significativamente a remoção de material devida à deformação plástica da matriz. O desgaste do aço nitretado SAE XEV-F foi menor que o das amostras não tratadas em quase duas ordens de grandeza. Os benefícios da nitretação no aço válvula SAE XEV-F foram dois: a) o aumento da dureza da superfície, e b) a prevenção da fratura e desprendimento de NbC, o que resulta em uma resistência de desgaste ainda maior.
5

Mechanisms of Formation and Effects of Transition Metal Oxides in Silicon Nitride on Steel Dry Sliding Contacts

Harris, Michael D. 12 1900 (has links)
Silicon nitride on steel sliding contacts may provide advantageous tribological properties over traditional self-mated pairs, however the friction and wear behavior at high sliding speeds (>1 m/s) is not well understood. Previous studies at low sliding speeds (< 1 m/s) have found that the wear mechanisms change as a function of the operating parameters, e.g. atmosphere, sliding speed, load, and temperature, due to the formation of transition metal oxides such as Fe2O3 and Fe3O4. This study detected transient effects of the dry silicon nitride on steel contact over a range of sliding speeds to understand their relation to tribochemical reactions and the resulting tribological behavior. Two sets of dry silicon nitride on steel experiments were conducted at 1.45 GPa maximum Hertzian pressure. The first set were low sliding speed reciprocating experiments, conducted at an average of 0.06 m/s, conducted at variable operating temperature, ranging from 23 °C to 1000 °C. In the low sliding speed experiments, transitions of the wear mechanism from adhesive wear, to abrasive wear, then to oxidative wear was observed when the operating temperature increased. The second set were high sliding speed experiments, conducted at variable sliding speeds, ranging from 1 m/s to 16 m/s. In the high sliding speed experiments, a transition from adhesive wear to oxidative wear was observed when the sliding speed surpassed 4.5 m/s. The high sliding speed experiments were accompanied by in-situ instrumentation which detected the presence of a tribofilm which correlated to a reduction in friction, and its formation was linked to tribochemical reactions induced by high flash temperatures. Both sets of experiments had a maximum estimated contact temperature of 1000 °C where oxidative wear was prevalent. Although, the low sliding speed experiments underwent severe bulk oxidation and thermal softening effects, while the high sliding speed experiments experienced localized flash heating events with temperatures sufficient to form a semi-coherent tribofilm that was lubricious and significantly improved wear resistance. Therefore, the effects of transition metal oxides in sliding contacts are determined to be significantly influenced on their mechanisms of formation and interrelated to the operating parameters as found for dry sliding silicon nitride on steel contacts.
6

Dry Sliding Wear of Saffil Short Fibre Reinforced AZ91D Mg Alloy Composite

Hegde, Adarsh K January 2016 (has links) (PDF)
Magnesium alloys have emerged as a promising material for light-weighting due to their potential for higher weight saving compared with advanced high-strength steel, aluminium alloys and glass fibre reinforced polymer composites based on equal stiffness or strength. Even though magnesium alloys offer low density, high strength to weight ratio and excellent machinability their poor creep resistance and low yield strength at elevated temperatures (~150oC) restricts their use in automotive powertrain applications. Possible ways of improving the creep resistance include development of creep resistant alloys and/or reinforcing the alloy with ceramic particulates, fibres/whiskers. Several magnesium alloys such as – Mg-Zr based alloys, Mg-Al-RE alloys (RE: rare earth), Mg-Al-Ca alloys, Mg-Al-Sr alloys, Mg-Al-Sr-Ca alloys, Mg-Al-Si alloys offer improvement in creep resistance to different extent. However, these alloys are relatively expensive than the widely used Mg-Al-Zn alloys. Some of these alloys are unsuitable for die casting application due to cracking or die filling problems for example, in Ca and Sr containing alloys their content must be controlled to avoid castability problems. Discontinuous reinforcement of magnesium alloys opens up wide variety of casting techniques for production. Most of the components do not require high performance capability all throughout the component. Squeeze casting technique can be used to economically produce selectively reinforced composites having complex near-net-shape components. By selectively reinforcing only the regions of stress concentration, material property can be optimised at the same time lowering both the cost of manufacturing and machining. In the present study, wear behaviour of Saffil short fibre reinforced AZ91D Mg alloy composite prepared by squeeze casting is explored. The Mg-Saffil composite had a two dimensional planar random fibre orientation which was inherent to the fabrication process of porous fibre preform. In the as-polished specimen fibres protrude out of the Mg matrix due to differential polishing. The Mg-Saffil composites were subject to unidirectional sliding wear against steel counterface under nominally dry condition in ambient atmosphere at low velocities, to simulate the piston reversal at the top dead centre of an engine wherein lubrication starvation results in wear of engine cylinder. The fibres protruding out of the magnesium matrix prevent the softer Mg matrix coming in contact with the counterface material. The worn surface was examined by means of scanning electron microscopy and the physical and chemical changes caused by the wear processes were characterised using different spectroscopic techniques. The effect of fibre distribution and fibre orientation on wear of the composite was studied. Depending on the radius of curvature of the counterface, inhomogeneities in the fibre distribution up to a certain length scale were permissible without deteriorating the wear resistance of the composite. The normal fibre orientation proved deleterious to the wear of the counterface. But wear of the composite was independent of the fibre orientation of the wear surface. In contrast to unreinforced AZ91 Mg alloy which undergoes extensive wear, the steel counterface was machined by the hard alumina fibres protruding out of the matrix. With progressive sliding a discontinuous patch of transferred material formed on the worn surface. Eventually, an oxidised iron-rich transfer layer formed on the worn surface due to compaction of the transferred material and wear debris under the combined action of applied normal load and frictional force. The coefficient of friction plateaus following an initial rapid increase with the increase in the areal coverage of the transfer layer. The abrupt increase in friction coincides with the change in contact at the sliding interface from protruding alumina fibres/steel counterface to mostly between the transferred layer and steel counterface. The increase in friction due to the iron-rich transfer layer formed on the worn surface induced bending stresses in the fibre. A correlation between the incipient fibre fracture and build-up of the transfer layer was observed. Wear of the composite was governed by the dawn of the fibre fracture event, which in turn leads to three-body wear. Diamond-like carbon coatings are well-known for their low friction, high hardness and elastic modulus, chemical inertness and optical transparency. They have found widespread use due to their superior tribological characteristics as protective coatings for magnetic storage media (hard-disk drives), in micro-electromechanical devices (MEMS), biomedical applications (joint implants, artificial heart valves), optical windows (anti-reflection coating) and razor blades. The physical and mechanical properties of these coatings can be tailored by controlling the sp3 /sp2 ratio and modification via alloying with metals such as W, Ti, Cr, Al; or non-metallic elements such as B, N, F, Si. A tungsten doped hydrogenated diamond-like carbon coated steel counterface was used to rule out or minimise any chemical and physical interaction between the composite and the counterface. The composite exhibited a higher wear resistance when slid against a DLC coated steel counterface due to ease of interfacial sliding between the carbon-rich transfer layer and the DLC coated counterface. The transition from ultra-mild to mild wear was not altogether suppressed but delayed to higher loads, prolonging the ultra-mild wear regime. As a result of reduced friction the point of maximum shear stress recedes from the surface, which manifests as subsurface cracks. The dominant wear mechanism of Mg-Saffil composite sliding against the DLC coated counterface was delamination wear.
7

A pre-study for functional coatings evaluated on light metals to be applied on a new HPDC Mg-alloy : Investigating tribological and thermophysical properties, as-cast and coated

Albo Zieme, Louise, Bergstedt, Pontus January 2021 (has links)
Magnesium with two-thirds of the density compared to aluminium and one-quarter of steel, intrigues product developers and material scientists due to the light metal’s excellent combination of strength to weight ratio as well as their capability of being produced as a High Pressure Die Cast component compared to other ferrous or light metal alloys.   However, a magnesium alloy inherits some concerning drawbacks, limiting the exploitation in structural applications and mechanical design such as automotive, heavy machinery and aerospace components. The need for a magnesium alloy that could withstand a sufficient amount of wear, temperature and corrosive environment, leads towards the investigation and evaluation of a suitable, functional coating as a solution to exploit the evident advantages a magnesium alloy exhibits. A substantial amount of research is required in order to reduce an existing knowledge gap that is the ongoing development in the search for a sufficient functional coating and adherence capability to the highly reactive substrate that is a magnesium alloy.   This industrial master thesis is an early stage investigation to evaluate how the currently used aluminium substrate with an electrodeposited coating relate and compares to a heat-treated electroless deposited coating through tribological and thermophysical induced stresses. These properties are tested with proven industrial standard methods resulted in a comprehensive conclusion and discussion regarding the feasibility of applying the coating onto a commercial magnesium alloy closely related to the Mg-alloy developed by Husqvarna and thereby contributing to technological advances to the highly relevant topic within product development in materials engineering.

Page generated in 0.0928 seconds