• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal and hydraulic properties of sandy soils during drying and wetting cycles

Ali, Alexis, Mohamed, Mostafa H.A., Aal, M., Schellart, A., Tait, Simon J. January 2014 (has links)
No / There is an increasing interest in the use of Ground Source Heat Pumps (GSHPs) as a source of renewable energy in temperate countries. GSHPs coupled with buried heat collectors can harness the thermal energy from near-surface soils to provide the heating required for domestic properties. The performance of a GSHP system depends greatly on the thermal conductivity of the surrounding soils. Near-surface soils undergo cycles of drying and wetting due to, for example, the infiltration of rain water and/or fluctuations of the ground water table. Several parameters - including the properties of soil, suction head and saturation history - affect the thermal properties as well as the retention and flow of water. This paper presents results from a comprehensive laboratory investigation on sand samples with markedly different grain size distribution. Simultaneous measurements of thermal and hydraulic properties of the sands were taken under incremental increase/decrease in the suction head values to simulate cycles of drying and wetting. The results clearly suggest that the thermal conductivity is better expressed as a function of the matric suction head so as to reflect the saturation history. There has been almost five-fold increase in the measured value of thermal conductivity when the soil was wetted to a residual degree of saturation from being dry.
2

Volume Change Behavior of Expansive Soils due to Wetting and Drying Cycles

January 2013 (has links)
abstract: In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided. / Dissertation/Thesis / Ph.D. Civil and Environmental Engineering 2013
3

Influence des cycles humectation-dessiccation sur la minéralisation du carbone : cas de la zone cotonnière du Nord Cameroun / Influence of drying wetting on carbon mineralization : the caseof cotton area north Cameroon

Yemadje, Pierrot, Lionel 28 September 2015 (has links)
Le sol est un compartiment majeur de stockage du carbone (C) organique de l’écosystème terrestre. Il joue un rôle important dans la régulation du climat. Toute variation des flux de carbone entre l’atmosphère et l’écosystème terrestre pourrait avoir un impact important sur l’augmentation de CO2 dans l’atmosphère, mais aussi sur la diminution des teneurs en matière organique du sol et donc sur la fertilité des sols. Au Nord Cameroun, les sols sont exposés à de longues périodes sèches (5 à 6 mois par an) qui alternent avec une saison humide. La période de transition entre ces deux saisons, peut durer de mi-avril à fin juin et est caractérisée par des pluies très irrégulières. Ces cycles d’humectation-dessiccation pourraient selon la littérature accentuer la minéralisation du carbone organique du sol et le cycle des éléments nutritifs. L’objectif de cette étude est de quantifier l’impact des cycles humectation-dessiccation sur la minéralisation du carbone dans un contexte soudano-sahélien. Pour faire des mesures représentatives sur le terrain, il est nécessaire d’étudier la variation sur 24 heures de la respiration du sol après humectation suite à une période sèche. Cette mise au point méthodologique a montré que la respiration du sol présente une courbe quadratique au cours de la journée, devenant presque linéaire au cours de la nuit. La température et l’humidité du sol ont permis d’expliquer au moins 73% des variations sur 24 heures. Ces observations ont été utilisées pour proposer une méthode pour estimer la respiration moyenne diurne et nocturne après humectation des sols. La méthode proposée dans cette étude a l’avantage d’être basée sur un nombre réduit de mesures et est par conséquent plus facile à mettre en œuvre pour suivre la respiration du sol sur 24 heures après les premières pluies. Une première étude expérimentale de terrain a permis de montrer que la ré-humectation des sols et le mode de gestion des pailles ont augmenté la minéralisation du carbone de ces sols. En revanche, la fréquence des cycles humectation-dessiccation des sols sur une période de 50 jours n’a pas augmenté la minéralisation cumulée du carbone des sols. Au Nord Cameroun, la minéralisation rapide des pailles rend difficile l’augmentation des stocks de carbone du sol par conservation des pailles des cultures précédentes à la surface du sol. Dans une seconde expérimentation de laboratoire, en conditions contrôlées, les cycles humectation-dessiccation n’ont pas augmenté la minéralisation du carbone organique du sol et de l’azote (N) par rapport aux sols maintenus humides. Cependant, les émissions de CO2 ont augmenté avec l’addition de paille enrichie en carbone-13. Cette addition de la paille marquée a augmenté la minéralisation de la matière organique du sol (priming effect). La minéralisation de la paille a diminué avec les cycles humectation-dessiccation et la quantité de paille restante était de 102 µg Cg-1 sol sur les sols ré-humectés contre 48 µg Cg-1 sol sur les sols maintenus humides. L’absence de cette réponse de la minéralisation du carbone et d’azote du sol aux cycles humectation-dessiccation pourrait être liée à une baisse de l’activité microbienne durant les périodes de dessèchement et l’absence d’une augmentation soutenue des taux de minéralisation du carbone avec les cycles ultérieurs d’humectation-dessiccation. / Soil as a major storage component for terrestrial ecosystem’s organic carbon plays an important role in regulating climate and agricultural production. Any variation of carbon fluxes between the atmosphere and the terrestrial ecosystem can have a significant impact on the increase of carbon dioxide in the atmosphere but also the decrease in soil organic matter and thus accelarate soil fertility degradation. In northern Cameroon, the transition period between long dry periods with a wet season is characterized by very irregular rainfall that can last several weeks. These wetting-drying cycles can accentuate the mineralization of soil organic carbon and nutrient cycling. The objective of this study is to assess the impact of wet-dry cycles on carbon mineralization in a sudano-sahelian context. From methodological stand field measurements require to study the soil respiration variation over 24 hours after a wet period. This methodological test has shown that soil respiration has a quadratic curve during the day, becoming almost linear during the night. The temperature and soil moisture have explained together the variation over 24 hours (at least 73% ; p< 0.001). These observations have been used to propose a method for estimating the mean daytime and nighttime soil respiration after wetting the soil. Indeed the method proposed in this study has the advantage of being based on a small number of measurements and is, therefore, easier to implement to monitor 24-h soil respiration after the first rains following a long dry period. A first experiment has shown that the wetting of the soil and mulching increased soil carbon mineralization. However, wetting-drying cycles on soil did not increase the cumulative mineralization of soil carbon more than keeping the soil continuously moist. Indeed, in northern Cameroon, the rapid mineralization of crop residues makes it difficult to increase soil carbon stocks by mulching. In a second laboratory experiment, the wetting-drying cycles did not increase organic carbon and nitrogen mineralization from soils added with straw. However, carbon dioxide emissions increased on straw amended soils compared to soils without straw. This addition of the labeled straw increased mineralization of soil organic matter (priming effect). The mineralization of the straw also decreased with the wetting-drying cycles, thus the amount of straw remaining on soils was 102 µg C g-1 soil on re-wetted soils compared to 48 µg C g-1 soil for those with constant moisture. The lack of response for C and N mineralization during wetting-drying cycles may be linked to a decrease of microbial activity during dry periods and the lack of a steady increase in the carbon mineralization rate with subsequent wetting-drying cycles.
4

Chimie de l'eau et transport particulaire dans un crassier sidérurgique : de la zone non saturée à la zone saturée / Water Chemistry and Particulate Transport in a Steel Slag Landfill : from Vadose Zone to Saturated Zone

Houecande, Orianne 27 October 2016 (has links)
Les particules mobiles du sol peuvent transporter des polluants vers la nappe phréatique. Dans les crassiers sidérurgiques, les éléments métalliques lixiviés contribuent à une contamination rapide des eaux du sol. L’objectif de ce travail est de comprendre les mécanismes qui interviennent dans le transport en solution et sous forme particulaire dans des déchets sidérurgiques stockés sur le long terme. Pour ce faire, une caractérisation complète des compositions minéralogiques et chimiques a été effectuée. Elle révèle que ces déchets sont constitués de minéraux de haute température typiques des laitiers et de minéraux d’altération météorique. Les eaux de percolation montrent des pH élevés, dus à des teneurs élevées en calcium, et des teneurs importantes en aluminium et silicium. Les teneurs en chrome et molybdène, et ponctuellement en vanadium sont élevées dans les lixiviats des laitiers de fusion. L’analyse granulométrique des particules mobilisées, pour des pluies simulées en colonne, indique que leur taille moyenne est de 200 µm, ce qui laisse prévoir une faible mobilité dans les formations sous-jacentes moins perméables. Les calculs de spéciation montrent que les lixiviats sont saturés ou proches de l'équilibre vis-à-vis des silicates calciques hydratés et souvent saturés en molybdate de calcium. / Mobile soil particles can transport pollutants to groundwater. In slag heaps, leached metallic elements contribute to soil water contamination. The aim of this work is to identify the role of slag particles in contaminant transport under unsaturated and saturated conditions. Mineralogical compositions and physicochemical properties of slags are first determined. The analysis show high temperature slag phases and weathering phases. Percolation tests are also carried out in repacked waste columns under infiltration/drying cycles to find out the effects of dry periods on in situ particle mobilization. Preferential flows lead to rapid transport of solute through the repacked column in vadose zone. Leachates are characterized by high pH and high concentrations of calcium, aluminum and silicon, molybdenum, chromium in the fusion slags. Speciation calculations showed that the leachates are saturated in calcium silicate hydrates. Laser size analyzer shows that the slag particles mobilized during the simulated rain events are around 200 µm, which suggests low mobility in the less permeable underlying formations.

Page generated in 0.0265 seconds