• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and Design of Microwave Filters and Duplexers with Single and Dual Band Responses

Mandal, Iman K. 08 1900 (has links)
In this thesis the general Chebyshev filter synthesis procedure to generate transfer and reflection polynomials and coupling matrices were described. Key concepts such as coupled resonators, non-resonant nodes have been included. This is followed by microwave duplexer synthesis. Next, a technique to design dual band filter has been described including ways to achieve desired return loss and rejection levels at specific bands by manipulating the stopbands and transmission zeros. The concept of dual band filter synthesis has been applied on the synthesis of microwave duplexer to propose a method to synthesize dual band duplexers. Finally a numerical procedure using Cauchy method has been described to estimate the filter and duplexer polynomials from measured responses. The concepts in this thesis can be used to make microwave filters and duplexers more compact, efficient and cost effective.
2

Circuit Synthesis and Implementation of LTCC Dual-Passband Filter

Lin, Kuan-chang 27 July 2008 (has links)
This thesis proposes a novel dual passband filter architecture and develops a design flow and synthesis method for this architecture. The technical contents include the fundamental passband filter design and the further methods for generating the higher second passband and the multiple transmission zeros. This thesis organizes a design flow based on analytical formulation for the proposed dual passband filter architecture. One can follow this design flow to substitute the filter specifications into the formulation and then can obtain the necessary element values for the filter architecture that match the specified specifications. The dual passband filter architecture is finally implemented on LTCC substrate for WLAN (IEEE 802.11 a/b/g) applications with verification of S parameters using EM-simulation and actual measurement.

Page generated in 0.0393 seconds