• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Design of Horizontally Polarized and Dual-Polarized Uniplanar Conical Beam Antennas for HIPERLAN

Gardiner, John G., Abd-Alhameed, Raed, Excell, Peter S., McEwan, Neil J., Ibrahim, Embarak M. January 2003 (has links)
No / It is shown that a conical beam 5.2-GHz antenna suitable for HIPERLAN application, but working in horizontal polarization, can be realized as a group of microstrip patch radiators in a ring formation. Layouts with three and four patches are described, and radiation patterns are found to agree well with predictions from a simple array model. The three-patch form is smaller and gives a closer approximation to an azimuth-independent pattern. Patterns are very similar to those achieved in vertical polarization with previously reported disk antenna realizations, giving peak radiation at about 50 elevation. Two methods of impedance matching are found to give satisfactory results. A dual-polarized conical-beam microstrip antenna, with a strictly uniplanar conductor pattern, is also presented and realized as an array of three square patches whose corners meet a central feed point. For the second polarization, the antenna functions as a series fed array. Fairly good conical beam patterns have been obtained, though only moderate polarization purity appears to be obtainable from threeelement arrays.
2

Indoor MIMO Channels with Polarization Diversity: Measurements and Performance Analysis

Anreddy, Vikram R. 12 April 2006 (has links)
This thesis deals with dual-polarized multiple input multiple output (MIMO) channels, an important issue for the practical deployment of multiple antenna systems. The MIMO architecture has the potential to dramatically improve the performance of wireless systems. Much of the focus of research has been on uni-polarized spatial MIMO configurations, the performance of which, is a strong function of the inter-element spacing. Thus the current trend of miniaturization, seems to be at odds with the implementation of spatial configurations in portable handheld devices. In this regard, dual-polarized antennas present an attractive alternative for realizing higher order MIMO architectures in compact devices. Unlike spatial channels, in the presence of polarization diversity, the subchannels of the MIMO channel matrix are not identically distributed. They differ in terms of average received power, envelope distributions, and correlation properties. In this thesis, we report on an indoor channel measurement campaign conducted at 2.4 GHz, to measure the copolarized and cross-polarized subchannels, under line-of-sight (LOS) and non-line-of-sight (NLOS) channel conditions. The measured data is then analyzed, to draw a fair comparison between spatial and dual-polarized MIMO systems, in terms of channel characteristics and achievable capacity. The main drawback of the MIMO architecture is that the gain in capacity comes at a cost of increased hardware complexity. Antenna selection is a technique using which we can alleviate this cost. We emphasize that this strategy is all the more relevant for compact devices, which are often constrained by complexity, power and cost. Using theoretical analysis and measurement results, this thesis investigates the performance of antenna selection in dual-polarized MIMO channels. Our results indicate that, antenna selection when combined with dual-polarized antennas, is an effective, low-complexity solution to the problem of realizing higher order MIMO architectures in compact devices.

Page generated in 0.0836 seconds