Spelling suggestions: "subject:"dulac"" "subject:"lulac""
1 |
Teorema Normalización Poincare Dulac en CⁿJurado Cerrón, Liliana Olga January 2012 (has links)
El presente trabajo estudia Sistemas de Ecuaciones Diferenciales Ordinarias Complejas y se demostrará los siguientes teoremas, Teorema de Linealización de Poincaré en Cⁿ que dice que un campo con autovalores no resonantes es localmente equivalente con su parte lineal y el Teorema de Dulac en Cⁿ que dice que un campo con autovalores resonantes es localmente equivalente a un campo polinomial / ---This work studies Ordinary Differential Equations Systems Complex and prove the following theorems, Theorem Poincar´e Linearization in Cⁿ which says that a field with non-resonant eigenvalues is locally equivalent to its linear part and Theorem Dulac says will show that a field with eigenvalues resonant is locally equivalent to a polynomial field.
|
2 |
Modelos epidemiológicos SEIROliveira, Isabel Mesquita de January 2008 (has links)
No description available.
|
3 |
To desire differently : feminism and the French cinema /Flitterman-Lewis, Sandy, January 1900 (has links)
Texte remanié de: Ph. D. diss.--Comparative literature--Berkeley (Calif.)--University of California. / Notes bibliogr. Bibliogr. p. [321]-332. Index.
|
4 |
Normalisation C-infini des systèmes complètement intégrables / C- infinity normalization of completely integrable systemsJiang, Kai 28 September 2016 (has links)
Cette thèse est consacrée à l’étude de la linéarisation géométrique locale des systèmes complètement intégrables dans la catégorie C1. Le sujet est la conjecture de linéarisation géométrique proposée (et établie dans le cadre analytique) par Nguyen Tien Zung. Nous commençons par les systèmes linéaires, puis introduisons la normalisation dans la catégorie formelle. Nous montrons qu’un système intégrable peut être décomposé en une partie hyperbolique et une partie elliptique. Nous établissons une bonne forme normale de Poincaré-Dulac pour les champs de vecteurs et discutons sa relation avec la linéarisation géométrique. Nous montrons que les systèmes intégrables faiblement hyperboliques sont géométriquement linéarisables en utilisant les outils de Chaperon. Nous étudions les systèmes intégrables sur les espaces de petite dimension : si celle-ci n’est pas plus grande que 4, alors la plupart des cas sont géométriquement linéarisables ; en particulier, la linéarisation géométrique est possible pour les systèmes intégrables de type de foyer-foyer. Enfin, nous généralisons la démonstration en grande dimension et proposons une condition sur les variétés fortement invariantes, sous laquelle nous linéarisons géométriquement les systèmes. Nous parvenons également à normaliser une action de R × T à plusieurs foyers en nous référant aux idées de Zung. / This thesis is devoted to the local geometric linearization of completely integrable systems in the C1 category. The subject is the geometric linearization conjecture proposed (and proved in the analytic case) by Nguyen Tien Zung. We start from linear systems and introduce normalization in the formal category. Wes how that an integrable system can be decomposed into a hyperbolic part and an elliptic part. We establish a good Poincaré-Dulac normal form for the vector fields and discuss its relation with geometric linearization. We prove that weakly hyperbolic integrable systems are geometrically linearizable byusing Chaperon’s tools. We then study integrable systems on small dimensional spaces: if the dimension is no more than 4, then most cases are geometrically linearizable; in particular,geometric linearization works for integrable system of focus-focus type. Finally, we generalize the proof to high dimensions and propose a condition about strongly invariant manifolds, under which we linearize the systems in the geometric sense. We also manage to normalize an R × T-action of several focuses by referring to the ideas of Zung.
|
5 |
Beyond impressions the life and films of Germaine Dulac from aesthetics to politics /Williams, Tami Michelle, January 2007 (has links)
Thesis (Ph. D.)--UCLA, 2007. / Vita. Includes bibliographical references (leaves 345-366). Filmography: Leaves 336-344.
|
6 |
Lyric narrative in late modernism Virginia Woolf, H.D., Germaine Dulac, and Walter Benjamin /Hindrichs, Cheryl Lynn. January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Available online via OhioLINK's ETD Center; full text release delayed at author's request until 2011 May 19
|
7 |
Nonintegrability of Dynamical Systems near Equilibria and Heteroclinic Orbits / 平衡点およびヘテロクリニック軌道の近傍における力学系の非可積分性Yamanaka, Shogo 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第22582号 / 情博第719号 / 新制||情||123(附属図書館) / 京都大学大学院情報学研究科数理工学専攻 / (主査)教授 矢ヶ崎 一幸, 教授 中村 佳正, 教授 梅野 健 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
8 |
Thirty Years of Change: How Subdivisions on Stilts have Altered A Southeast Louisiana Parish's Coast, Landscape and PeopleSolet, Kimberly 22 May 2006 (has links)
In thirty years, the number of second homes for recreation fishers in coastal Terrebonne Parish has grown from 244 in the late 1970s to an estimated 2,500 in 2005. This thesis considers the ramifications of the tourism boom along the parish's historically isolated and undeveloped coastline. Four coastal communities are examined: (1) Montegut, Pointe-aux-Chenes and Isle de Jean Charles; (2) Cocodrie and Chauvin; (3) Dulac; and (4) Dularge and Theriot. The research question is twofold: Why has coastal tourism been allowed to develop in the fragile wetlands that protect residents from dangerous storms?; and What does tourism development mean for the indigenous American Indian and Cajun people who live along the coast? The author argues the proliferation of recreation fishing camps has had a serious dislocating effect on coastal Terrebonne's population, and the ongoing development of the tourism industry will devastate culturally rich bayou regions.
|
Page generated in 0.0292 seconds