• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seismic Assessment of Unreinforced Masonry Walls

Wijanto, Ludovikus Sugeng January 2007 (has links)
This thesis focuses on the seismic performance of unreinforced masonry wall perforated with a door opening representing typical URM walls of many aged masonry buildings in Indonesia. To obtain a test result that will be able to represent the local conditions, the experiments have been conducted in the Research Institute for Human Settlements (RIHS) laboratory in Bandung-Indonesia. Two 75 % unreinforced masonry (URM) walls with a 1½-wythe of solid clay-brick were constructed in Dutch bond configuration and tested until failure under quasi-static-reversed cyclic loading. Both units were loaded vertically by constant loads representing gravity loads on the URM wall’s tributary area. Both models were constructed using local materials and local labours. Two features were taken into account. First, it accommodated the influence of flanged wall and second, the URM wall was built on the stone foundation. The first URM wall represent the plain existing URM building in Indonesia and second strengthened by Kevlar fibre. It was observed from the test results that the URM wall Unit-1 did not behave as a brittle structure. It could dissipate energy without loss of strength and had a post-elastic behaviour in terms of “overall displacement ductility” value of around 8 to 10. As predicted, the masonry material was variable and non homogeneous which caused the hysteresis loop to be non symmetrical between push and pull lateral load directions. It can be summarized that Kevlar fibre strengthening technique is promising and with great ease of installation. Although Kevlar material is more expensive when compared to other fabrics as long as it was applied at the essential locations and in limited volumes, it can significantly increase the in-plane URM wall capacity. With appropriate arrangements of Kevlar fibre, a practicing engineer will be able to obtain a desired rocking mechanism in the masonry structure. Another advantage for the architectural point of view, very thin Kevlar fibres do not reduce the architectural space. Studies have also been undertaken to analyze the in-plane response of plain URM wall before and after retrofiting using the current seismic standard and the Finite Element Method (FEM).

Page generated in 0.0292 seconds