• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 22
  • 22
  • 22
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Energy Efficiency and Conservation Attitudes: An Exploration of a Landscape of Choices

McClaren, Mersiha Spahic 27 February 2015 (has links)
This study explored energy-related attitudes and energy-saving behaviors that are no- or low-cost and relatively simple to perform. This study relied on two data sources: a longitudinal but cross-sectional survey of 4,102 U.S. residents (five biennial waves of this survey were conducted from 2002 to 2010) and a 2010 cross-sectional survey of 2,000 California residents. These two surveys contained data on two no- and low-cost behaviors: changing thermostat setting to save energy (no-cost behavior) and CFL installation behavior (low-cost behavior). In terms of attitudes, two attitudinal measures emerged from these data following a Cronbach's alpha and Confirmatory Factor Analysis (CFA): the pro-environmental attitude and concern for the energy use in the U.S. society. These two attitudes, along with other socio-demographic and external factors (home ownership, weather, price of energy, etc.), were examined to assess whether attitude-behavior relationships persisted over time, were more prominent across certain groups, or were constrained by income or other socio-demographic factors. Three theoretical viewpoints of how attitudes may relate to behavior guided the analysis on how attitudes and contextual factors may inter-relate either directly or through a moderator variable to affect thermostat-setting and CFL installation behavior. Results from these analyses revealed four important patterns. First, a relationship between the pro-environmental attitude and the two behaviors (thermostat-setting and CFL installation behavior) was weak but persistent across time. Second, financial factors such as income moderated the pro-environmental attitude and CFL installation relationship, indicating that the pro-environmental attitude could influence the behavior in those situations where financial resources are sufficient to comfortably allow the consumer to participate. Third, this study documented that most people reported changing thermostat settings to save energy or having one or more CFLs in their homes. This finding suggests that organizations, policy makers, or energy efficiency program administrators may want to assess whether they should pursue these two behaviors further, since they appear to be very common in the U.S. population. Last, this study showed that thermostat-setting and CFL installation behavior have multi-factorial influences; many factors in addition to attitudes were significantly associated with these behaviors, and all these factors together explained no more than 16% of behavioral variance. This suggested that if energy-saving behaviors are a function of many different variables, of which none appear to be the "silver bullet" in explaining the behaviors (as noted in this study), then policy analysis should explore a broader number of causal pathways and entertain a wider range of interventions to influence consumers to save energy.
12

Energy labeling of residential buildings in Hong Kong

Lee, Kwun-hang., 李冠恒. January 2009 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
13

Sol-Clad-Siding and Trans-Lucent-Insulation : curtain wall components for conserving dwelling heat by passive-solar means / Curtain wall components for conserving dwelling heat by passive-solar means

Iliesiu, Doru January 1983 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1983. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH / Includes bibliographical references (p. 69-70). / A prototype for a dwelling heat loss compensator is introduced in this thesis, along with its measured thermal performance and suggestions for its future development. As a heat loss compensator, the Sol-Clad-Siding collects, stores, and releases solar heat at room temperatures thereby maintaining a neutral skin for structures, which conserves energy, rather than attempting to supply heat into the interior as most solar systems do. Inhabitants' conventional objections to passive-solar systems utilized in housing are presented as a contrasting background. The potential of the outer component, a Trans-Lucent-Insulation as a sunlight diffuser and transmitter (65 to 52% of heating season insulation) and as a good insulator [0.62 W/(sq m) (°K) [0.11 Btu/(hr) (sq ft) (°F) 1] are described. The performance of the inner component, a container of phase-change materials as an efficient vertical thermal storage is discussed, and areas for future research are addressed. A very brief application of this passive-solar curtain wall system for dwellings is also given. / by Doru Iliesiu. / M.S.
14

Energy retrofitting in the preservation of residential and small commercial structures

Stiller, Ron C. January 1984 (has links)
This thesis explored the energy conservation requirements necessary to retrofit existing historic structures. Residential and small commercial buildings were selected as significant examples. This study discussed and analyzed the historic, climatic, technical, and economic contexts which impact the energy conservation strategy. The major economic and architectural benefits were identified and described. A methodology was developed incorporating feasible retrofitting measures for historic buildings. This included technical and economic ranking of retrofitting measures with prototypical building type studies documenting the theoretical thermal performance before and after incorporation of retrofitting measures. / Department of Architecture
15

Energy Footprinting and Human-Centric Building Co-Optimization with Multi-Task Deep Reinforcement Learning

Wei, Peter January 2021 (has links)
In the United States, commercial and residential buildings are responsible for 40% of total energy consumption, which provides an important opportunity for energy impact. As we spend the majority of our active moments during the day in transportation, commercial buildings, streets, and infrastructure, some of the greatest opportunities to reduce energy usage occur when we are outside of the home. A large percentage of energy consumption in the built environment directly or indirectly services humans; thus, there is a significant amount of untapped energy savings that can be achieved by involving humans in the optimization process. By including occupants in the building co-optimization process, we can gain a better understanding of individual energy responsibility and significantly improve energy consumption, thermal comfort and air quality over non human-in-the-loop systems and strategies. First, we present ePrints, a scalable energy footprinting system capable of providing personalized energy footprints in real-time. ePrints supports different apportionment policies, with microsecond-level footprint computation time and graceful scaling with the size of the building, frequency of energy updates, and rate of occupant location changes. Finally, we present applications enabled by our system, such as mobile and wearable applications to provide users timely feedback on the energy impacts of their actions, as well as applications to provide energy saving suggestions and inform building-level policies. Next, we extend the idea of energy footprinting to the city-scale with CityEnergy a city-scale energy footprinting system that utilizes the city's digital twin to provide real-time energy footprints with a focus on 100% coverage. CityEnergy takes advantage of existing sensing infrastructure and data sources in urban cities to provide energy and population estimates at the building level, even in built environments that do not have existing or accessible energy or population data. CityEnergy takes advantage of LFTSys, a low frame-rate vehicle tracking and traffic flow system that we implement on New York City's traffic camera network, to aid in building population estimates. Evaluations comparing CityEnergy with building level energy footprints and city-wide data demonstrate the potential for CityEnergy to provide personal energy footprint estimates at the city-scale. We then tackle the challenge of involving humans in the building energy optimization process by developing recEnergy, a recommender system for reducing energy consumption in commercial buildings with human-in-the-loop. recEnergy learns actions with high energy saving potential through deep reinforcement learning, actively distribute recommendations to occupants in a commercial building, and utilize feedback from the occupants to better learn four different types of energy saving recommendations. Over a four week user study, recEnergy improves building energy reduction from a baseline saving (passive-only strategy) of 19% to 26%. Finally, we extend the recommender system to co-optimize over energy consumption, occupant thermal comfort, and air quality. The recommender system utilizes a multi-task deep reinforcement learning architecture, and is trained using a simulation environment. The simulation environment is built using different models trained on data captured from a digital twin of a real deployment. To measure occupant thermal comfort, the digital twin utilizes a real-time comfort estimation system that extracts and integrates facial temperature features with environmental sensing to provide personalized comfort estimates. We studied three different use cases in this deployment by varying the objective weights in the recommender system, and found that the system has the potential to further reduce energy consumption by 8% in energy focused optimization, improve all objectives by 5-10% in joint optimization, and improve thermal comfort by up to 21% in comfort and air quality focused optimization by incorporating move recommendations.
16

Efficient Adoption of Residential Energy Technologies Through Improved Electric Retail Rate Design

Rauschkolb, Noah Benjamin January 2023 (has links)
This dissertation combines methods from engineering, operations research, and economics to analyze how emerging residential energy technologies can be effectively used to reduce both energy costs and carbon emissions. Our most important finding is that air-source heat pumps can be used to reduce both energy costs and carbon emissions in four out of the five major climate regions studied, but that electric retail rate reform is needed to provide customers with appropriate incentives. In cold climates, it may be advantageous to use heat pumps in tandem with fossil fuel-powered furnaces; in warmer regions, furnaces can be cost-effectively abandoned altogether. We do not find that distributed rooftop solar panels or distributed battery storage are effective tools for reducing the cost of energy services. Rather, in our simulations, customers adopt these technologies in response to poor price signaling by electric utilities. By reforming electric retail rates so that the prices paid by consumers better reflect the cost of energy services, utilities can promote the adoption of technologies that reduce both aggregate costs and carbon emissions.
17

Perceived thermal comfort and energy conservation strategies in residential heating

Turner, Carolyn S. January 1985 (has links)
The perception of thermal comfort is an important factor influencing the acceptability of residential heating strategies. The perceived thermal comfort may affect a person's inclination to try a strategy or to use it on a long-term basis. In the study, perceived thermal comfort was assessed in relation to room temperature, humidity, clothing worn, preferred room temperatures, personal control over the temperatures, and energy consumption. The relationships among these variables were examined for five families participating in a live-in study comparing five residential heating strategies. The strategies tested included closing off bedroom vents/doors, setting the thermostat at 65°F, and the use of a solar greenhouse and a woodstove as supplemental heat sources. The families lived in a retrofitted solar test house for a period of four to six weeks. The house was equipped with a computer which monitored 37 channels of information at ten-second intervals and recorded the data hourly. The data collected included temperatures in every room, inside and outside humidity, wind velocity, and other variables that interplay in comfort levels and energy use. The ten adult respondents completed daily and weekly questionnaires containing Likert-type scales of thermal comfort and checklists of clothing worn. The results suggest the following conclusions: 1) the use of a residential setting to measure thermal comfort under varying environmental conditions can be successfully accomplished, 2) psychological variables such as personal control should be considered and tested by persons involved in standards development for the thermal environment, 3) the ability and experience of the persons to use a strategy can affect the achieved energy saving benefits of the strategy, 4) personal preference in the amount of personal effort a person is willing or able to give will impact on the decision on whether to use certain strategies, 5) heating strategies that can produce a direct source of heat or at least some warmer areas were rated higher by the project participants, and 6) weather can play an important role in the effectiveness of the solar greenhouse as a heating source. / Ph. D. / incomplete_metadata
18

Risk-conscious design of off-grid solar energy houses

Hu, Huafen 16 November 2009 (has links)
Zero energy houses and (near) zero energy buildings are among the most ambitious targets of society moving towards an energy efficient built environment. The "zero" energy consumption is most often judged on a yearly basis and should thus be interpreted as yearly net zero energy. The fully self sustainable, i.e. off-grid, home poses a major challenge due to the dynamic nature of building load profiles, ambient weather condition and occupant needs. In current practice, the off-grid status is accomplishable only by relying on backup generators or utilizing a large energy storage system. The research develops a risk based holistic system design method to guarantee a match between onsite sustainable energy generation and energy demand of systems and occupants. Energy self-sufficiency is the essential constraint that drives the design process. It starts with information collection of occupants' need in terms of life style, risk perception, and budget planning. These inputs are stated as probabilistic risk constraints that are applied during design evolution. Risk expressions are developed based on the relationships between power unavailability criteria and "damages" as perceived by occupants. A power reliability assessment algorithm is developed to aggregate the system underperformance causes and estimate all possible power availability outcomes of an off-grid house design. Based on these foundations, the design problem of an off-grid house is formulated as a stochastic programming problem with probabilistic constraints. The results show that inherent risks in weather patterns dominate the risk level of off-grid houses if current power unavailability criteria are used. It is concluded that a realistic and economic design of an off-grid house can only be achieved after an appropriate design weather file is developed for risk conscious design methods. The second stage of the research deals with the potential risk mitigation when an intelligent energy management system is installed. A stochastic model based predictive controller is implemented to manage energy allocation to sub individual functions in the off-grid house during operation. The controller determines in real time the priority of energy consuming activities and functions. The re-evaluation of the risk indices show that the proposed controller helps occupants to reduce damages related to power unavailability, and increase thermal comfort performance of the house. The research provides a risk oriented view on the energy self-sufficiency of off-grid solar houses. Uncertainty analysis is used to verify the match between onsite sustainable energy supply and demand under dynamic ambient conditions in a manner that reveals the risks induced by the fact that new technologies may not perform as well as expected. Furthermore, taking occupants' needs based on their risk perception as constraints in design evolution provides better guarantees for right sized system design.
19

A comparison of residential energy efficiency strategies between historic preservation and building science / Title on signature form: Comparison of residential energy efficiency strategies between the historic preservation community and the building science approach

Beach, Holly D. 07 July 2011 (has links)
The National Park Service has provided guidance to the public for years regarding weatherization measures for historic houses. Some of this guidance advised against installing wall insulation, citing the potential for moisture condensation resulting in structural damage. With the passage of the American Recovery and Reinvestment Act in 2009, a substantial investment was made in the 30 year old Weatherization Assistance Program, which provides federal funds for home weatherization. The program has used wall insulation with no reported problems and proven energy savings. Some State Historic Preservation Offices (who review federally funded actions) protested the use of wall insulation based on the NPS guidance, especially Preservation Brief #3. This thesis describes the fundamental differences between the preservation community’s approach to energy efficiency as compared to the weatherization community’s approach, and addresses some concerns of historic preservation officials regarding perceived potential damage of some weatherization measures, including wall insulation. / Introduction : HP and DOE programmatic agreement -- Energy efficiency guidance from the historic preservation community -- Guidance from the weatherization community -- Analysis of differences between preservation guidance and DOE guidance -- Recommendations. / Department of Architecture
20

Energy efficiency interventions for residential buildings in Bloemfontein using passive energy techniques

Kumirai, Tichaona January 2010 (has links)
Thesis (M. Tech. (Mech. Eng.)) -- Central University of Technology, Free state, 2010 / The purpose of this research is to minimize the use of active systems in providing thermal comfort in single-family detached, middle to high income residential buildings in Bloemfontein. The typical case study house was selected according to the criteria as reviewed by Mathews et al., (1999). Measurements were taken for seven days (18 – 24 May 2009). The measurements were carried out in the winter period for Bloemfontein, South Africa. Ecolog TH1, humidity and temperature data logger was used in doing the measurements. These measurements included indoor temperatures and indoor relative humidity. Temperature swings of 8.43 ºC and thermal lag of 1 hour were observed. For the period of seven days (168 hours), the house was thermally comfortable for 84 hours. Thermal analysis for the base case house was done using Ecotect™ (building analysis software) and the simulated results were compared with the measured results. A mean bias error (MBE) of between 10.3% ≤≤11.5% was obtained on the initial calibration. The final calibration of the model yielded error between0.364% ≤≤0.365%. The final calibration model which presented a small error was adopted as the base case. Passive strategies were incorporated to the Ecotect™ model (final calibrated model) singly and in combination; then both thermal and space load simulations were obtained and compared to simulations from the original situation (base case) for assessing improvements in terms of thermal comfort and heating, ventilation and air conditioning (HVAC) energy consumption. Annual HVAC electricity savings of up to 55.2 % were obtained from incorporating passive strategies in combination. Incorporating passive strategies resulted in small improvements in thermal comfort.

Page generated in 0.1267 seconds