• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ultrafast charge dynamics in mesoporous materials used in dye-sensitized solar cells

Tiwana, Priti January 2013 (has links)
This thesis is concerned with measuring ultrafast electron dynamics taking place in dye-sensitized mesoporous semiconductor films employed as working electrodes in dye-sensitized solar cells (DSCs). An understanding of these ultrafast charge transfer mechanisms is essential for designing efficient photovoltaic (PV) devices with high photon-to-current conversion efficiency. Optical-pump terahertz-probe (OPTP) spectroscopy is a sub-picosecond resolution, non-contact, photoconductivity measurement technique which can be used to directly measure charge carrier dynamics within nanostructured materials without the need for invoking complex modelling schemes. A combination of OPTP and photovoltaic measurements on mesoporous TiO2 films show an early-time intra-particle electron mobility of 0.1 cm2/(Vs). This value is an order of magnitude lower than that measured in bulk TiO2 and can be partly explained by the restricted electron movement because of geometrical constraints and increased trap sites in the nanostructured material. In addition, the mesoporous film behaves like a nanostructured composite material, with the TiO2 nanoparticles embedded in a low dielectric medium (air or vacuum), leading to lower apparent electron mobility. THz mobility measured in similar mesoporous ZnO and SnO2 films sensitized with the same dye is calculated to be 0.17 cm2/(Vs) for ZnO and 1.01 cm2/(Vs) for SnO2. Possible reasons for the deviation from mobilities reported in literature for the respective bulk materials have been discussed. The conclusion of this study is that while electron mobility values for nanoporous TiO2 films are approaching theoretical maximum values, both intra- and inter-particle electron mobility in mesoporous ZnO and SnO2 films offer considerable scope for improvement. OPTP has also been used to measure electron injection rates in dye-sensitized TiO2, ZnO and SnO2 nanostructured films. They are seen to proceed in the order TiO2 >SnO2 >ZnO. While the process is complete within a few picoseconds in TiO2/Z907, it is seen to extend beyond a nanosecond in case of ZnO. These measurements correlate well with injection efficiencies determined from DSCs fabricated from identical mesoporous films, suggesting that the slow injection components limit the overall solar cell photocurrent. The reasons for this observed difference in charge injection rates have been explored within. It is now fairly common practice in the photovoltaic community to apply a coating of a wide band-gap material over the metal-oxide nanoparticles in DSCs to improve device performance. However, the underlying reasons for the improvement are not fully understood. With this motivation, OPTP spectroscopy has been used to study how the conformal coating affects early-time mechanisms, such as electron injection, trapping or diffusion length. The electron injection process is unaffected in case of TiCl4-treated TiO2 and MgO-treated ZnO, while it becomes much slower in case of MgO-treated SnO2. Finally, a light-soaking effect observed in SnO2-based solid-state DSCs has been examined in detail using THz spectroscopy and transient PV measurement techniques. It is concluded that continued exposure to light results in a rearrangement of charged species at the metal-oxide surface. This leads to an increase in the density of acceptor states or a lowering of the SnO2 conduction band edge with respect to the dye excited state energy level, ultimately leading to faster electron transport and higher device photocurrents.
12

Construction of photosensitised semiconductor cathodes

Mat-Teridi, Mohd January 2012 (has links)
Recent studies suggest that the performance of dye-sensitised solar cells (DSC) has appeared to have reached a limit, therefore solar cells based on semiconductor materials, such as extremely thin absorber (ETA) solar cells and tandem solar cells are currently the subject of intense research in the framework of low-cost photovoltaic devices as sources of harvesting sunlight to generate electricity. Generally, semiconductor solar cells have been divided into two different types, namely anodic and cathodic type solar cells. Extensive research and development work has been focused on anodic semiconductor sensitised solar cells to date. In contrast, the cathodic semiconductor sensitised solar cells have received no attention which is very surprising. Developing the cathodic semiconductor sensitised solar cell concept is very important in the development of tandem solar cells as well as other new solar cell configurations. The main reason for the lack of research in this area was due to the rarity of p-type semiconductor materials, which made it difficult to find suitable materials to match the energy band edges for cathodic semiconductor sensitised solar cells (CSSC) as well as solid-state cathodic semiconductor solar cells (SS-CSSC). The primary aim of this thesis was to construct cathodic semiconductor sensitised solar cells as well as their solid-state analogues (SS-CSSC). The work conducted within this doctoral study presents state-of-art materials and thin film processing/preparation methods, their characterisation and developing CSSCs and SS-CSSCs employing such films in cascade configurations. No reports have been published in the literature on SS-CSSC to date. The first stage of this thesis is focused on optimising the morphology and the texture (porosity) of the CuI and NiO semiconductor photocathode, by the introduction of new deposition methods namely, pulsed-electrodeposition (PED) and Aerosol-Assisted Deposition (AAD) and Aerosol-Assisted Chemical Vapour Deposition (AACVD). The electrodes prepared by employing the methods mentioned above and controlling the deposition parameters systematically, we have achieved significant improvement in the film morphology and the texture of the deposited films. The resulting electrodes showed excellent improvement in the photoelectrochemical performance which made it suitable for application in construction of both CSSC and SS-CSSC. The photoelectrochemical performance of the electrodes can be seen clearly through the photocurrent density data. For the case of bare CuI, the PEC performance of electrode prepared by the AAD and PED compared against that of continuous-electrodeposition (ED) electrodes. The photocurrent density achieved for the electrodes prepared by AAD and PED was reported around 175 and 75 µAcm-2 respectively which are way higher than the ED case. At the second stage of this study, the work focused on fabrication and characterisation of the CSSCs. Cathodic sensitised PEC solar cells (CuI/Cu2S/(Eu2+/Eu3+) and NiO/Cu2S/(I3-/I-)) were fabricated by deposition of p-Cu2S on the texture controlled CuI and NiO photocathodes. The morphological properties of the photocathode, in particular layer thickness, particle size and film porosity, play an important role in the PEC performance of CSSCs. Optimisation of these parameters led to increased adsorption of the Cu2S light harvester on the photocathode s surface. As a result, the charge injection from Cu2S to the wide band gap photocathode material (CuI and NiO) was significantly improved. Due to this, the CSSC performance showed significant improvement as semiconductor sensitised cathodic solar cells (CSSC). The IPCE and photocurrent density of the CSSC achieved in this study was around (19 and 7 %) and (1 and 0.5 mAcm-2) for the CuI/Cu2S and NiO/Cu2S electrodes respectively. Finally, the SS-CSSC has been fabricated by employing n-Fe2O3 electron transport layer. The construction of SS-CSSC for the first time using the n-Fe2O3 electron transport layer (CuI/Cu2S/Fe2O3 and NiO/Cu2S/Fe2O3) allowed us to study the materials, optical and photoelectrochemical properties of this device. Under AM 1.5 illumination, the SS-CSSC shows a photocurrent density of 6 and 9 µAcm-2 for CuI/Cu2S/Fe2O3 and NiO/Cu2S/Fe2O3 solar cells, respectively. The results of this work indicated low performance for both SS-CSSC compared to CSSC results, due to the lack of adsorption between the absorber and Fe2O3 electrode. However, this study proved the concept of SS-CSSC based on semiconductor material, which is valuable for the future work of cathodic semiconductor sensitised solar cells as well as solid-state tandem solar cells.
13

TiO2 nanotube based dye- sensitised solar cells

Cummings, Franscious Riccardo January 2012 (has links)
Philosophiae Doctor - PhD / This work investigated the synthesis of Al2O3-coated TiO2 nanotubes via the anodisation technique for application in DSCs. TiO2 nanotube arrays with an average length of 15 μm, diameter of 50 nm and wall thickness of 15 nm were synthesised via anodisation using an organic neutral electrolyte consisting of 2 M H2O + 0.15 M NH4F + ethylene glycol (EG) at an applied voltage of 60 V for 6 hours. In addition, scanning electron microscope (SEM) micrographs showed that anodisation at these conditions yields nanotubes with smooth walls and hexagonally shaped, closed bottoms. X-ray diffraction (XRD) patterns revealed that the as-anodised nanotubes were amorphous and as such were annealed at 450 °C for 2 hours in air at atmospheric pressure, which yielded crystalline anatase TiO2 nanotubes. Highresolution transmission electron microscope (TEM) images revealed that the nanotube walls comprised of individual nano-sized TiO2 crystallites. Photoluminescence (PL) spectroscopy showed that the optical properties, especially the bandgap of the TiO2 nanotubes are dependent on the crystallinity, which in turn was dependent on the structural characteristics, such as the wall thickness, diameter and length. The PL measurements were supplemented by Raman spectra, which revealed an increased in the quantum confinement of the optical phonon modes of the nanotubes synthesised at low anodisation voltages, consequently yielding a larger bandgap The annealed nanotubes were then coated with a thin layer of alumina (Al2O3) using a simple sol-gel dip coating method, effectively used to coat films of nanoparticles. Atomic force microscopy (AFM) showed that the average nanotube diameter increased post sol-gel deposition, which suggests that the nanotubes are coated with a layer of Al2O3. This was confirmed with HR-TEM, in conjunction with selected area electron diffraction (SAED) and XRD analyses, which showed the coating of the nanotube walls with a thin layer of amorphous Al2O3 with a thickness between 4 and 7 nm. Ultraviolet-visible (UVvis) absorbance spectra showed that the dye-adsorption ability of the nanotubes are enhanced by the Al2O3 coating and hence is a viable material for solar cell application. Upon application in the DSC, it was found by means of photo-current density – voltage (I – V) measurements that a DSC fabricated with a 15 μm thick layer of bare TiO2 nanotubes has a photon-to-light conversion efficiency of 4.56%, which increased to 4.88% after coating the nanotubes with a layer of alumina. However, these devices had poorer conversion efficiencies than bare and Al2O3-coated TiO2 nanoparticle based DSCs, which boasted with efficiencies of 6.54 and 7.26%, respectively. The low efficiencies of the TiO2 nanotube based DSCs are ascribed to the low surface area of the layer of nanotubes, which yielded low photocurrent densities. Electrochemical impedance spectroscopy (EIS) showed that the electron lifetime in the alumina coated nanotubes are almost 20 times greater than in a bare layer of nanoparticles. In addition, it was also found that the charge transfer resistance at the interface of the TiO2/dye/electrolyte is the lowest for an Al2O3-coated TiO2 layer.
14

Electrocatalysis using Ceramic Nitride and Oxide Nanostructures

Anju, V G January 2016 (has links) (PDF)
Global warming and depletion in fossil fuels have forced the society to search for alternate, clean sustainable energy sources. An obvious solution to the aforesaid problem lies in electrochemical energy storage systems like fuel cells and batteries. The desirable properties attributed to these devices like quick response, long life cycle, high round trip efficiency, clean source, low maintenance etc. have made them very attractive as energy storage devices. Compared to many advanced battery chemistries like nickel-metal hydride and lithium - ion batteries, metal-air batteries show several advantages like high energy density, ease of operation etc. The notable characteristics of metal - air batteries are the open structure with oxygen gas accessed from ambient air in the cathode compartment. These batteries rely on oxygen reduction and oxygen evolution reactions during discharging and charging processes. The efficiency of these systems is determined by the kinetics of oxygen reduction reaction. Platinum is the most preferred catalyst for many electrochemical reactions. However, high cost and stability issues restrict the use of Pt and hence there is quest for the development of stable, durable and active electrocatalysts for various redox reactions. The present thesis is directed towards exploring the electrocatalytic aspects of titanium carbonitride. TiCN, a fascinating material, possesses many favorable properties such as extreme hardness, high melting point, good thermal and electrical conductivity. Its metal-like conductivity and extreme corrosion resistance prompted us to use this material for various electrochemical studies. The work function as well as the bonding in the material can be tuned by varying the composition of carbon and nitrogen in the crystal lattice. The current study explores the versatility of TiCN as electrocatalyst in aqueous and non-aqueous media. One dimensional TiC0.7N0.3 nanowires are prepared by simple one step solvothermal method without use of any template and are characterized using various physicochemical techniques. The 1D nanostructures are of several µm size length and 40 ± 15 nm diameter (figure 1). Orientation followed by attachment of the primary particles results in the growth along a particular plane (figure 2). (a) (b) (c) Figure 1. (a) SEM images of TiC0.7N0.3 nanowires (b) TEM image and (c) High resolution TEM image showing the lattice fringes. (a) (b) (d) Figure 2. Bright field TEM images obtained at different time scales of reaction. (a) 0 h; (b) 12 h; (c) 72 h and (d) 144 h. The next aspect of the thesis discusses the electrochemical performance of TiC0.7N0.3 especially for oxygen reduction. Electrochemical oxygen reduction reaction (ORR) reveals that the nanowires possess high activity for ORR and involves four electron process leading to water as the product. The catalyst effectively converts oxygen to water with an efficiency of 85%. A comparison of the activity of different (C/N) compositions of TiCN is shown in figure 3. The composition TiC0.7N0.3 shows the maximum activity for the reaction. The catalyst is also very selective for ORR in presence of methanol and thus cross-over issue in fuel cells can be effectively addressed. Density functional theory (DFT) calculations also lead to the same composition as the best for electrocatalysis, supporting the experimental observations. Figure 3. Linear sweep voltammetric curves observed for different compositions of titanium carbonitride towards ORR. The next chapter deals with the use of TiC0.7N0.3 as air cathode for aqueous metal - air batteries. The batteries show remarkable performance in the gel- and in liquid- based electrolytes for zinc - air and magnesium - air batteries. A partial potassium salt of polyacrylic acid (PAAK) is used as the polymer to form a gel electrolyte. The cell is found to perform very well even at very high current densities in the gel electrolyte (figures 4 and 5). Figure 4 Photographs of different components of the gel - based zinc - air battery. (a) (b) Figure 5. a) Discharge curves at different current densities of 5, 20, 50 and 100 mA/cm2 for zinc-air system with TiC0.7N0.3 cathode b) Charge – discharge cycles at 50 mA/cm2 for the three electrode configuration with TiC0.7N0.3 nanowire for ORR and IrO2 for OER and Zn electrode (2h. cycle period). Similarly, the catalytic activity of TiC0.7N0.3 has also been explored in non-aqueous electrolyte. The material acts as a bifunctional catalyst for oxygen in non- aqueous medium as well. It shows a stable performance for more than 100 cycles with high reversibility for ORR and OER (figure 6). Li-O2 battery fabricated with a non-aqueous gel- based electrolyte yields very good output. (a) (b) (c) Figure 6. Galvanostatic charge –discharge cycles. (a) at 1 mA/cm2 (b) specific capacity as a function of no. of cycles (c) photographs of PAN-based gel polymer electrolyte. Another reaction of interest in non –aqueous medium is I-/I3-. redox couple. TiC0.7N0.3 nanowires show small peak to peak separation, low charge transfer resistance and hence high activity. The catalyst is used as a counter electrode in dye sensitized a solar cell that shows efficiencies similar to that of Pt, state of the art catalyst (figure 7). (a) (b) (c) Figure 7 (a) Cyclic voltammograms for I-/I3 - redox species on TiC0.7N0.3 nanowires (red), TiC0.7N0.3 particle (black) and Pt (blue). (b) Photocurrent density - voltage characteristics for DSSCs with different counter electrodes. TiC0.7N0.3 nanowire (black), TiC0.7N0.3 particle (blue), Pt (red). (c) Photograph of a sample cell. (a) (b) (c) (d) Figure 8 a) Comparison ORR activity for (i) NiTiO3(black), (ii) N-rGO (red), (iii) NiTiO3 – N-rGO (green) and (iv) Pt/C (blue) (b) Linear sweep voltammograms for OER observed on NiTiO3 – N-rGO composite (black), NiTiO3 (brown), N-rGO (blue), glassy carbon (red) in 0.5 M KOH. (c) Galvanostatic discharge curves of NiTiO3 – N-rGO as air electrode (d) Charge – discharge cycle at 5 mA/cm2 for the rechargeable battery with 10 min. cycle period. The last part of the thesis discusses about a ceramic oxide, nickel titanate. The electrocatalytic studies of the material towards ORR and OER reveal that the catalyst shows remarkable performance as a bifunctional electrode. A gel - based zinc - air battery fabricated with nickel titanate – reduced graphene oxide composite shows exceptional performance of 1000 charge-discharge cycles in the rechargeable mode (figure 8). Of course, the primary battery configuration works very well too The thesis contains seven chapters on the aspects mentioned above with summary and future perspectives given as the last chapter. An appendix based on TiN nanotubes and supercapacitor studies is given at the end.

Page generated in 0.0865 seconds