• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Coordination and Adsorption of Dye and Improvement of Dye-sensitized Solar Cell Efficiency

Yen, Han 27 July 2011 (has links)
Alternative energy sources such as solar energy have attracted an extensive interest in the petroleum shortage era. Among solar cells, dye-sensitized solar cell (DSSC) attracts the attention of widespread research teams because of the easy-production process, low cost, and good photon-to-electron conversion efficiency. In this study, both UV and acid solution such as HCl are used to improve the efficiency of DSSC. The UV illumination can eliminate organic contaminates on TiO2 by photocatalysis and enhance the adsorption of dye molecules. Meanwhile, the coordination mode between TiO2 and dye could be changed and lower the electron transportation. If the HCl solution is used after UV illumination, the coordination mode can be preserved. Moreover, H+ from HCl can attract the COO¡Ð anchoring group of dye by electrostatic force. It further increases the adsorption of dye and improves the DSSC efficiency. The coordination mode was measured by Fourier-transform infrared spectrometer (FTIR). The internal resistance was measured by electrical impedance spectroscopy (EIS). The chemical properties were characterized by X-ray photoelectron spectroscopy (XPS). The light absorbance was measured by ultraviolet-visible spectroscopy (UV-Vis). The morphology was observed by field emission scanning electron microscope (FE-SEM). The performance of the cells was measured by a semiconductor device analyzer. In our results, the conversion efficiency was improved from 6.29% of untreated one to 6.71 and 7.39% for UV and UV + HCl treated ones.
2

Optical Spectrocopy on Nanostructrured Materials

Xu, Chenzhi January 2015 (has links)
Solar cells are designed to transform the optical energy into electrical energy. Using solar energy is the best way for humans to solve the energy shortage problem. Dye sensitized solar cell(DSSC) has a low cost and helps people to obtain the solar energy expediently. The DSSC is based on nano structured TiO2 ; and dye molecules help the particles of TiO2 to absorb more photons. Hence DSSC has higher efficiency than SC(solar cell without dye). This thesis elaborates and analyzes the dye which is sensitized to TiO2. The absorption spectrum of the dye was achieved. Two kinds of dye sample were made on the basis of their places in structure of TiO2. One dye sample is solution, nanopowder of the dye in aceton. The other dye sample is film, thin film on a quartz plate. The absorption spectrums of the samples have been measured in laboratory. The measurement suggests that the dye works improves the absorption of solar energy in DSSC. This thesis mainly contains the following sections: Chapter I reviews the solar energy technology development, the research purposes, and the principles of DSSC. Chapter II introduces the theory of optical spectroscopy. Chapter III and Chapter IV describe the apparatus employed in this experimental system, the experimental method, and the testing results. Chapter V gives the conclusions drawn from the experiments.
3

Indigenous natural dyes for Gratzel solar cells : Sepia melanin

Mbonyiryivuze, Agnes 11 1900 (has links)
Dye-sensitized Solar Cells (DSSC), also known as Grätzel cells, have been identified as a cost-effective, easy-to-manufacture alternative to conventional solar cells. While mimicking natural photosynthesis, they are currently the most efficient third-generation solar technology available. Among others, their cost is dominated by the synthetic dye which consists of efficient Ruthenium based complexes due to their high and wide spectral absorbance. However, the severe toxicity, sophisticated preparation techniques as well as the elevated total cost of the sensitizing dye is of concern. Consequently, the current global trend in the field focuses on the exploitation of alternative organic dyes such as natural dyes which have been studied intensively. The main attractive features of natural dyes are their availability, environmental friendly, less toxicity, less polluting and low in cost. This contribution reports on the possibility of using sepia melanin dye for such DSSC application in replacement of standard costly ruthenium dyes. The sepia melanin polymer has interesting properties such as a considerable spectral absorbance width due to the high degree of conjugation of the molecule. This polymer is capable of absorbing light quantum, both at low and high energies ranging from the infrared to the UV region. The comprehensive literature survey on Grätzel solar cells, its operating principle, as well as its sensitization by natural dyes focusing on sepia melanin has been provided in this master’s dissertation. The obtained results in investigating the morphology, chemical composition, crystalline structure as well as optical properties of sepia melanin samples using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy x-ray diffraction, X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, UV-VIS absorption spectroscopy as well as Photoluminescence (PL) for Grätzel solar cell application have been reported. These results represent an important step forward in defining the structure of melanin. The results clearly show that sepia melanin can be used as natural dye to DSSC sensitization. It is promising for the realization of high cell performance, low-cost production, and non-toxicity. It should be emphasized here that natural dyes from food are better for human health than synthetic dyes. / Physics / 1 online resource (xii, 101 leaves) : illustrations / M. Sc. (Physics)
4

Indigenous natural dyes for Gratzel solar cells : Sepia melanin

Mbonyiryivuze, Agnes 11 1900 (has links)
Dye-sensitized Solar Cells (DSSC), also known as Grätzel cells, have been identified as a cost-effective, easy-to-manufacture alternative to conventional solar cells. While mimicking natural photosynthesis, they are currently the most efficient third-generation solar technology available. Among others, their cost is dominated by the synthetic dye which consists of efficient Ruthenium based complexes due to their high and wide spectral absorbance. However, the severe toxicity, sophisticated preparation techniques as well as the elevated total cost of the sensitizing dye is of concern. Consequently, the current global trend in the field focuses on the exploitation of alternative organic dyes such as natural dyes which have been studied intensively. The main attractive features of natural dyes are their availability, environmental friendly, less toxicity, less polluting and low in cost. This contribution reports on the possibility of using sepia melanin dye for such DSSC application in replacement of standard costly ruthenium dyes. The sepia melanin polymer has interesting properties such as a considerable spectral absorbance width due to the high degree of conjugation of the molecule. This polymer is capable of absorbing light quantum, both at low and high energies ranging from the infrared to the UV region. The comprehensive literature survey on Grätzel solar cells, its operating principle, as well as its sensitization by natural dyes focusing on sepia melanin has been provided in this master’s dissertation. The obtained results in investigating the morphology, chemical composition, crystalline structure as well as optical properties of sepia melanin samples using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy x-ray diffraction, X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), Raman spectroscopy, UV-VIS absorption spectroscopy as well as Photoluminescence (PL) for Grätzel solar cell application have been reported. These results represent an important step forward in defining the structure of melanin. The results clearly show that sepia melanin can be used as natural dye to DSSC sensitization. It is promising for the realization of high cell performance, low-cost production, and non-toxicity. It should be emphasized here that natural dyes from food are better for human health than synthetic dyes. / Physics / 1 online resource (xii, 101 leaves) : illustrations / M. Sc. (Physics)
5

Structure-property relationships of dyes as applied to dye-sensitized solar cells

Gong, Yun January 2018 (has links)
This work investigates the correlation of structural and photovoltaic properties of dyes used in dye-sensitized solar cells. Experimental methods, including ultraviolet-visible spectroscopy, fluorescence spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy are employed to study optical and electrochemical properties of dye molecules. Computational methods, including density functional theory and time-dependent density functional theory, are used to validate and predict the optical and electronic properties of dye molecules, in their isolated state and once embedded into a working electrode device environment that comprises a dye...TiO2 interface. The results chapters begin with the presentation of a series of quinodimethene dyes that are experimentally validated for their photovoltaic application, and associated computational studies reveal that an inner structural factor - a phenyl ring rotation occurring during the optical excitation process - leads to the competitive photovoltaic device performance of these dyes. Carbazole-based dyes are then systematically studied by computation, especially considering charge transfer paths and binding modes of these dyes on a titania surface. The theoretical models for the basic building block of this chemical family of dyes, known as MK-44, successfully support and explain structural discoveries from X-ray diffraction and reflectometry that impact of their function. A benzothiadiazole-based dye, RK-1, is then systematically studied by both experimental and computational methods, and the results show that the π-bridge composed of thiophene, benzothiadiazole and benzene rings leads to excellent charge separation; and the rotation of these rings during the optical excitation process may well be consistent with the fluorescence spectrum. Finally, the well-known ruthenium-based dyes are theoretically studied to determine the properties of different ligands connected to the metal core of the complex. Conformations with different NCS ligands are calculated in terms of energy and explain well the corresponding results from X-ray diffraction. Acid-base properties of carboxyl groups connected to pyridine ligands in N3 and N749 are theoretically calculated based on thermodynamics and density functional theory. Implicit and explicit models are both adopted to predict these acid dissociative constant values, which are generally in a good agreement with the reported experimental data. The thesis concludes with conclusions and a future outlook.
6

Nové přístupy k chemické modifikaci diamantových povrchů / Novel approaches to chemical modification of diamond surface

Bartoň, Jan January 2020 (has links)
1 Abstract Diamond is a unique material for its physical and chemical stability. However, many advance applications rely on surface functionalisation. Here, two types of diamond were modified on the surface - thin layer of chemical vapor deposition (CVD) and nanodiamond particles (NDs) high pressure and high temperature (HPHT). The aim of CVD surface modification was to prepare photosensitised, conductive, diamond electrodes for dye sensitized solar cells (DSSC). For this purpose, a thin diamond layer doped with boron was deposited on the silicon wafer. Boron doping provided p-type (semi)conductivity to diamonds. The surface of the diamond was hydrogenated with H-plasma, and a short carbon linker with a protected amino group was UV-photografted to the surface. In another study, a photoconverting dye (P1) was covalently attached to the amine-linker. Furthermore, a dye designed based on donor-π-acceptor (D-π-A) concepts was attached to the surface. Finally, a systematic study was done for differently conductive diamond layer and the underlying silicon wafer These experiments gradually lead to the highest ever reported photocurrents of 6.6 µA cm2 for a flat photosensitised boron-doped-diamond (BDD) electrode. Monomolecular layer surface functionalizations on CVD diamond are difficult to detect or even quantify...

Page generated in 0.0997 seconds