• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

View-sharing PROPELLER MRI: Application on high spatio-temporal resolution dynamic imaging

Huang, Hsuan-Hung 03 September 2011 (has links)
Based on the acquisition trajectory, PROPELLER MRI repeatedly sampled the center k-space in every blade, which was used to provide most of the energy of an image. The purpose of view sharing PROPELLER is to improve the spatio-temporal resolution of dynamic imaging by reducing the acquisition time of single frame to that of single blade. With the center k-space provided by only one blade, which is called the target blade, the high spatial-frequency components were appropriately contributed by a set of neighboring blades with different rotation angles, leading to the high spatial resolution after reconstruction. In this study, a flow phantom experiment with the injection of T1-shortening Gd-DTPA solution was performed to exam the feasibility and accuracy of view-sharing PROPELLER. Furthermore, cardiac imaging of healthy volunteer obtained by the proposed technique was also done with ECG gating to test the image quality without any injection of contrast agent. The in-vivo experiment was done with and without breath holding. In addition to slight aliasing artifact due to insufficient FOV, no other artifact was observed.
2

Evaluation of Image Quality of Pituitary Dynamic Contrast-Enhanced MRI Using Time-Resolved Angiography With Interleaved Stochastic Trajectories (TWIST) and Iterative Reconstruction TWIST (IT-TWIST) / TWIST法と繰り返し再構成併用TWIST法を用いた下垂体ダイナミック造影MRIの画質評価

Yokota, Yusuke 23 September 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22743号 / 医博第4661号 / 新制||医||1046(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 花川 隆, 教授 渡邉 大, 教授 黒田 知宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
3

Neuroprotective Drug Delivery to the Injured Spinal Cord with Hyaluronan and Methylcellulose

Kang, Catherine 13 August 2010 (has links)
Traumatic spinal cord injury (SCI) is a devastating condition for which there is no effective clinical treatment. Neuroprotective molecules that minimize tissue loss have shown promising results; however systemic delivery may limit in vivo benefits due to short systemic half-life and minimal passage across the blood-spinal cord barrier. To overcome these limitations, an injectable intrathecal delivery vehicle comprised of hyaluronan and methylcellulose (HAMC) was developed, and previously demonstrated to be safe and biocompatible intrathecally. Here, HAMC was determined to persist in the intrathecal space for between 4-7 d in vivo, indicating it as an optimal delivery system for neuroprotective agents to reduce tissue degeneration after SCI. HAMC was then investigated as an in vivo delivery system for two neuroprotective proteins: erythropoietin (EPO) and fibroblast growth factor 2 (FGF2). Both proteins demonstrated a diffusive release profile in vitro and maintained significant bioactivity during release. When EPO was delivered intrathecally with HAMC to the injured spinal cord, reduced cavitation in the tissue and significantly improved neuron counts were observed relative to the conventional delivery strategies of intraperitoneal and intrathecal bolus. When FGF2 was delivered intrathecally from HAMC, therapeutic concentrations penetrated into the injured spinal cord tissue for up to 6 h. Poly(ethylene glycol) modification of FGF2 significantly increased the amount of protein that diffused into the tissue when delivered similarly. Because FGF2 is a known angiogenic agent, dynamic computed tomography was developed for small animal serial assessment of spinal cord hemodynamics. Following SCI and treatment with FGF2 from HAMC, moderate improvement of spinal cord blood flow and a reduction in permeability were observed up to 7 d post-injury, suggesting that early delivery of neuroprotective agents can have lasting effects on tissue recovery. Importantly, the entirety of this work demonstrates that HAMC is an effective short-term delivery system for neuroprotective agents by improving tissue outcomes following traumatic SCI.
4

Neuroprotective Drug Delivery to the Injured Spinal Cord with Hyaluronan and Methylcellulose

Kang, Catherine 13 August 2010 (has links)
Traumatic spinal cord injury (SCI) is a devastating condition for which there is no effective clinical treatment. Neuroprotective molecules that minimize tissue loss have shown promising results; however systemic delivery may limit in vivo benefits due to short systemic half-life and minimal passage across the blood-spinal cord barrier. To overcome these limitations, an injectable intrathecal delivery vehicle comprised of hyaluronan and methylcellulose (HAMC) was developed, and previously demonstrated to be safe and biocompatible intrathecally. Here, HAMC was determined to persist in the intrathecal space for between 4-7 d in vivo, indicating it as an optimal delivery system for neuroprotective agents to reduce tissue degeneration after SCI. HAMC was then investigated as an in vivo delivery system for two neuroprotective proteins: erythropoietin (EPO) and fibroblast growth factor 2 (FGF2). Both proteins demonstrated a diffusive release profile in vitro and maintained significant bioactivity during release. When EPO was delivered intrathecally with HAMC to the injured spinal cord, reduced cavitation in the tissue and significantly improved neuron counts were observed relative to the conventional delivery strategies of intraperitoneal and intrathecal bolus. When FGF2 was delivered intrathecally from HAMC, therapeutic concentrations penetrated into the injured spinal cord tissue for up to 6 h. Poly(ethylene glycol) modification of FGF2 significantly increased the amount of protein that diffused into the tissue when delivered similarly. Because FGF2 is a known angiogenic agent, dynamic computed tomography was developed for small animal serial assessment of spinal cord hemodynamics. Following SCI and treatment with FGF2 from HAMC, moderate improvement of spinal cord blood flow and a reduction in permeability were observed up to 7 d post-injury, suggesting that early delivery of neuroprotective agents can have lasting effects on tissue recovery. Importantly, the entirety of this work demonstrates that HAMC is an effective short-term delivery system for neuroprotective agents by improving tissue outcomes following traumatic SCI.

Page generated in 0.0789 seconds