• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INTEGRATED DECISION MAKING FOR PLANNING AND CONTROL OF DISTRIBUTED MANUFACTURING ENTERPRISES USING DYNAMIC-DATA-DRIVEN ADAPTIVE MULTI-SCALE SIMULATIONS (DDDAMS)

Celik, Nurcin January 2010 (has links)
Discrete-event simulation has become one of the most widely used analysis tools for large-scale, complex and dynamic systems such as supply chains as it can take randomness into account and address very detailed models. However, there are major challenges that are faced in simulating such systems, especially when they are used to support short-term decisions (e.g., operational decisions or maintenance and scheduling decisions considered in this research). First, a detailed simulation requires significant amounts of computation time. Second, given the enormous amount of dynamically-changing data that exists in the system, information needs to be updated wisely in the model in order to prevent unnecessary usage of computing and networking resources. Third, there is a lack of methods allowing dynamic data updates during the simulation execution. Overall, in a simulation-based planning and control framework, timely monitoring, analysis, and control is important not to disrupt a dynamically changing system. To meet this temporal requirement and address the above mentioned challenges, a Dynamic-Data-Driven Adaptive Multi-Scale Simulation (DDDAMS) paradigm is proposed to adaptively adjust the fidelity of a simulation model against available computational resources by incorporating dynamic data into the executing model, which then steers the measurement process for selective data update. To the best of our knowledge, the proposed DDDAMS methodology is one of the first efforts to present a coherent integrated decision making framework for timely planning and control of distributed manufacturing enterprises.To this end, comprehensive system architecture and methodologies are first proposed, where the components include 1) real time DDDAM-Simulation, 2) grid computing modules, 3) Web Service communication server, 4) database, 5) various sensors, and 6) real system. Four algorithms are then developed and embedded into a real-time simulator for enabling its DDDAMS capabilities such as abnormality detection, fidelity selection, fidelity assignment, and prediction and task generation. As part of the developed algorithms, improvements are made to the resampling techniques for sequential Bayesian inferencing, and their performance is benchmarked in terms of their resampling qualities and computational efficiencies. Grid computing and Web Services are used for computational resources management and inter-operable communications among distributed software components, respectively. A prototype of proposed DDDAM-Simulation was successfully implemented for preventive maintenance scheduling and part routing scheduling in a semiconductor manufacturing supply chain, where the results look quite promising.
2

Dynamic Data-Driven Visual Surveillance of Human Crowds via Cooperative Unmanned Vehicles

Minaeian, Sara, Minaeian, Sara January 2017 (has links)
Visual surveillance of human crowds in a dynamic environment has attracted a great amount of computer vision research efforts in recent years. Moving object detection, which conventionally includes motion segmentation and optionally, object classification, is the first major task for any visual surveillance application. After detecting the targets, estimation of their geo-locations is needed to create the same reference coordinate system for them for higher-level decision-making. Depending on the required fidelity of decision, multi-target data association may be also needed at higher levels to differentiate multiple targets in a series of frames. Applying all these vision-based algorithms to a crowd surveillance system (a major application studied in this dissertation) using a team of cooperative unmanned vehicles (UVs), introduces new challenges to the problem. Since the visual sensors move with the UVs, and thus the targets and the environment are dynamic, it adds to the complexity and uncertainty of the video processing. Moreover, the limited onboard computation resources require more efficient algorithms to be proposed. Responding to these challenges, the goal of this dissertation is to design and develop an effective and efficient visual surveillance system based on dynamic data driven application system (DDDAS) paradigm to be used by the cooperative UVs for autonomous crowd control and border patrol. The proposed visual surveillance system includes different modules: 1) a motion detection module, in which a new method for detecting multiple moving objects, based on sliding window is proposed to segment the moving foreground using the moving camera onboard the unmanned aerial vehicle (UAV); 2) a target recognition module, in which a customized method based on histogram-of-oriented-gradients is applied to classify the human targets using the onboard camera of unmanned ground vehicle (UGV); 3) a target geo-localization module, in which a new moving-landmark-based method is proposed for estimating the geo-location of the detected crowd from the UAV, while a heuristic method based on triangulation is applied for geo-locating the detected individuals via the UGV; and 4) a multi-target data association module, in which the affinity score is dynamically adjusted to comply with the changing dispersion of the detected targets over successive frames. In this dissertation, a cooperative team of one UAV and multiple UGVs with onboard visual sensors is used to take advantage of the complementary characteristics (e.g. different fidelities and view perspectives) of these UVs for crowd surveillance. The DDDAS paradigm is also applied toward these vision-based modules, where the computational and instrumentation aspects of the application system are unified for more accurate or efficient analysis according to the scenario. To illustrate and demonstrate the proposed visual surveillance system, aerial and ground video sequences from the UVs, as well as simulation models are developed, and experiments are conducted using them. The experimental results on both developed videos and literature datasets reveal the effectiveness and efficiency of the proposed modules and their promising performance in the considered crowd surveillance application.
3

Creating a Digital Twin by Using Real World Sensors

Efendic, Nedim January 2020 (has links)
Örebro University and Akademiska Hus have started an initiative towards smart buildings. Avery important role to this is Digital Twin for buildings. Digital twin for buildings is a virtualcopy of a physical building. And by adding a Data Driven Simulation System, an even moresmart building could be achieved. Given a humidity-, temperature-, illuminance- and motionsensor in a specific corridor at the Örebro University, this thesis will ascertain what can bedone by creating a Data Driven Simulation System and using these sensors to achieve thedesired smart building. In this thesis, a simulation was created with simulated sensors andpedestrians. The simulation is a clone of the real world, by using real life sensors andapplying the data to the simulated sensors, this was partially achieved.
4

DATA ASSIMILATION AND VISUALIZATION FOR ENSEMBLE WILDLAND FIRE MODELS

Chakraborty, Soham 01 January 2008 (has links)
This thesis describes an observation function for a dynamic data driven application system designed to produce short range forecasts of the behavior of a wildland fire. The thesis presents an overview of the atmosphere-fire model, which models the complex interactions between the fire and the surrounding weather and the data assimilation module which is responsible for assimilating sensor information into the model. Observation plays an important role in data assimilation as it is used to estimate the model variables at the sensor locations. Also described is the implementation of a portable and user friendly visualization tool which displays the locations of wildfires in the Google Earth virtual globe.
5

A Computational Framework for Assessing and Optimizing the Performance of Observational Networks in 4D-Var Data Assimilation

Cioaca, Alexandru 04 September 2013 (has links)
A deep scientific understanding of complex physical systems, such as the atmosphere, can be achieved neither by direct measurements nor by numerical simulations alone. Data assimilation is a rigorous procedure to fuse information from a priori knowledge of the system state, the physical laws governing the evolution of the system, and real measurements, all with associated error statistics. Data assimilation produces best (a posteriori) estimates of model states and parameter values, and results in considerably improved computer simulations. The acquisition and use of observations in data assimilation raises several important scientific questions related to optimal sensor network design, quantification of data impact, pruning redundant data, and identifying the most beneficial additional observations. These questions originate in operational data assimilation practice, and have started to attract considerable interest in the recent past. This dissertation advances the state of knowledge in four dimensional variational (4D-Var) - data assimilation by developing, implementing, and validating a novel computational framework for estimating observation impact and for optimizing sensor networks. The framework builds on the powerful methodologies of second-order adjoint modeling and the 4D-Var sensitivity equations. Efficient computational approaches for quantifying the observation impact include matrix free linear algebra algorithms and low-rank approximations of the sensitivities to observations. The sensor network configuration problem is formulated as a meta-optimization problem. Best values for parameters such as sensor location are obtained by optimizing a performance criterion, subject to the constraint posed by the 4D-Var optimization. Tractable computational solutions to this "optimization-constrained" optimization problem are provided. The results of this work can be directly applied to the deployment of intelligent sensors and adaptive observations, as well as to reducing the operating costs of measuring networks, while preserving their ability to capture the essential features of the system under consideration. / Ph. D.

Page generated in 0.0484 seconds