• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling, Estimation, and Control in Highway Traffic Based on Discrete Event Dynamic Systems

Keyu Ruan (9630080) 12 November 2020 (has links)
<div>Petri net (PN) is a useful tool for the modeling and analysis of complex systems and has been widely used in a variety of practical systems. This dissertation aims at studying highway transportation systems using Petri nets and investigating several fundamental problems related to the modeling, state/structure estimation, and control of highway traffic.</div><div>This dissertation starts with two kinds of modeling schemes. The first one uses the Probabilistic Petri net to model a highway segment. The traffic movement probabilities have also been shown. The second scheme uses the traditional Petri net structure to model the traffic network around a city’s metropolitan area, where places represent the destinations of interests and tokens represent time units.</div><div>After that, two estimation algorithms and one control algorithm have been proposed, respectively, based on external observations. The first algorithm deals with labeled Petri nets and the objective is to estimate the minimum initial marking that has (have) the smallest token sum. The second algorithm estimates the Petri net structures from the observations of finite token change sequences in terms of the minimum number of transitions and connections. At last, the traffic volume control algorithm is to keep the traffic volume within capacity. The controller will be applied in each evolution step depending on observation.</div><div>Since we have been focusing on the optimization problems of the structure and markings of the Petri net, it is directly related to the optimal route planning problems in highway traffic scenarios. Thus, we can obtain optimized traveling routes by applying proposed algorithms to the traffic systems.</div>
2

Novel textile reinforcements with integrated textile-based in-situ sensors for the reinforcement of existing concrete structures against short-term dynamic events

Le Xuan, Hung 04 February 2025 (has links)
Textile-reinforced concrete is a promising, innovative, and sustainable alternative to conventional reinforced concrete. Due to their high specific mechanical and excellent chemical properties, textile reinforcements, usually based on carbon fibers, have great potential for resource-efficient, lean, and long-term stable construction methods. Furthermore, they enable a cost-effective strengthening of existing building structures. However, the resistance to short-term dynamic loads, such as earthquakes, rockfalls, or car accidents, is low and can lead to devastating damage in extreme cases. In this thesis, impact-resistant textile reinforcements are developed and tested. The focus is on the concrete structure's impact-facing and impact-rear sides. A multi-scale approach is being pursued to evaluate suitable materials and test methods. This approach is used to research material properties and findings at the yarn, textile, composite, and structural scale. To achieve an improved understanding and to gain deep insight information of textile behavior under impact conditions and impact-induced wave propagation, textile-based strain sensors are developed and used in a network configuration. The acquisition of sensor data and optical analyses of high-speed images present extensive evaluations of impact propagation and strain distribution within the strengthening layer.:1 Introduction 2 State of the art 2.1 Key considerations for strain rate-dependent phenomena 2.1.1 Strain rate dependence 2.1.2 Definition of the strain rate scale 2.1.3 Types of impact 2.1.4 Wave propagation 2.2 High performance fiber materials for textile reinforced concrete 2.2.1 Introduction 2.2.2 Evaluation of suitable fiber materials 2.2.3 Carbon fiber 2.2.4 Steel fibers 2.3 Strain sensing sensor systems 2.3.1 Structural health monitoring 2.3.2 Sensor principles 2.3.3 Preferred sensor principle for the application in TRC 2.4 Textile reinforcement and yarn processing 2.4.1 Weaving 2.4.2 Multiaxial warp-knitting 2.4.3 Tailored-fiber placement 2.4.4 Braiding 2.5 Cement-based Composites 2.5.1 Overview 2.5.2 Steel reinforced concrete 2.5.3 Fiber reinforced concrete 2.5.4 Textile reinforced concrete 2.5.5 Hybrid reinforced concrete 2.6 Derived research gaps 3 Materials under investigation 3.1 Fiber and yarn materials 3.1.1 Materials used for reinforcement 3.1.2 Materials used for textile-based strain sensors 3.1.3 Textile reinforcement 3.2 Impregnation and matrices materials 3.2.1 Polymeric dispersion 3.2.2 Epoxy resin 3.2.3 Cementitious matrices 4 Development of a sensor network for impact scenarios 4.1 Requirements 4.2 Sensor design and network 4.3 Preferred solution 4.4 Measurement technology 5 Development of impact-resistant textile reinforcements for concrete structures 5.1 Definition of the research objective and boundary conditions 5.2 Textile reinforcement on the impact-facing side 5.2.1 Requirements 5.2.2 Conceptual design inspired by nature 5.2.3 Structural design and binding development of the textile reinforcement 5.2.4 Manufacturing process 5.3 Textile reinforcement on the impact-rear side 5.3.1 Requirements 5.3.2 Development process 5.3.3 Manufacturing process 6 Electromechanical characterization on the yarn scale 6.1 Experimental program 6.2 Stage I Fiber scale 6.2.1 Electrical resistance and electromechanical behavior under quasi-static tension 6.3 Stage II Composite scale without textile 6.3.1 Combined tension-compression tests 6.4 Stage III Composite scale with textile 6.4.1 Manufacturing of CFRP specimen with in-situ sensors 6.4.2 Testing procedure and strain measurement methods 6.4.3 Results 6.5 Summary 7 Material behavior on the composite scale 7.1 Quasi-static and impact bending behavior of TRC 7.1.1 Research objective 7.1.2 Textile reinforcement 7.1.3 Specimen manufacturing 7.1.4 Test setup 7.1.5 Results 7.1.6 Conclusion 7.2 Quasi-static tensile behavior of TRC with modified CF-NCF 7.2.1 Research objective 7.2.2 Specimen manufacturing and testing setup 7.2.3 Results 7.2.4 Conclusion 8 Material behavior on the structural scale 8.1 Design of the drop tower facility 8.2 Cementitious composite strengthening layers for the impact-facing side 8.2.1 Functionalized CW3DT reinforcement 8.2.2 Specimen manufacturing and testing parameters 8.2.3 Results 8.2.4 Conclusion 8.3 Cementitious composite strengthening layers for the impact-rear side 8.3.1 Specimen manufacturing and testing parameters 8.3.2 Results 8.3.3 Summarized discussion of the findings 9 Summary and outlook 9.1 Summary of the research work 9.2 Conclusions 9.3 Outlook Bibliography List of Figures List of Tables A Weaving pattern of the CW3DT / Textilverstärkter Beton ist eine vielversprechende, innovative und nachhaltige Alternative zum herkömmlichen Stahlbeton. Aufgrund ihrer hohen spezifischen mechanischen und ausgezeichneten chemischen Eigenschaften besitzen textile Bewehrungen, meist auf Carbonfaserbasis, ein großes Potenzial für ressourceneffiziente, schlanke und langzeitstabile Bauweisen. Bestehende Baustrukturen können dadurch nachträglich verstärkt werden. Allerdings ist die Widerstandsfähigkeit gegenüber kurzzeitdynamischer Beanspruchung, wie Erdbeben, Steinschlag oder Autounfälle, gering und kann im Extremfall zu verheerenden Schäden führen. In der vorliegenden Arbeit werden impaktresistente textile Verstärkungsschichten entwickelt und erprobt. Dabei liegt der Fokus sowohl auf der impaktzugewandten als auch auf der impaktabgewandten Strukturseite. Um geeignete Materialien und Prüfmethoden zu evaluieren, wird ein Mehrskalenansatz verfolgt. Dieser Ansatz dient zur Erforschung von Materialeigenschaften und Erkenntnissen auf der Garn\nobreakdash-, Textil-, Verbund- und Strukturebene. Zur Erreichung eines verbesserten Verständnisses des textilen Verhaltens unter Impaktbedingungen sowie der impaktinduzierten Wellenausbreitung, werden textilbasierte Dehnungssensoren entwickelt und in einem Netzwerk eingesetzt. Durch die Erfassung von Sensordaten und optischen Analysen von Hochgeschwindigkeitsaufnahmen werden umfangreiche Auswertungen zur Impaktausbreitung und Dehnungsverteilung innerhalb der textilen Betonverstärkungsschicht durchgeführt und präsentiert.:1 Introduction 2 State of the art 2.1 Key considerations for strain rate-dependent phenomena 2.1.1 Strain rate dependence 2.1.2 Definition of the strain rate scale 2.1.3 Types of impact 2.1.4 Wave propagation 2.2 High performance fiber materials for textile reinforced concrete 2.2.1 Introduction 2.2.2 Evaluation of suitable fiber materials 2.2.3 Carbon fiber 2.2.4 Steel fibers 2.3 Strain sensing sensor systems 2.3.1 Structural health monitoring 2.3.2 Sensor principles 2.3.3 Preferred sensor principle for the application in TRC 2.4 Textile reinforcement and yarn processing 2.4.1 Weaving 2.4.2 Multiaxial warp-knitting 2.4.3 Tailored-fiber placement 2.4.4 Braiding 2.5 Cement-based Composites 2.5.1 Overview 2.5.2 Steel reinforced concrete 2.5.3 Fiber reinforced concrete 2.5.4 Textile reinforced concrete 2.5.5 Hybrid reinforced concrete 2.6 Derived research gaps 3 Materials under investigation 3.1 Fiber and yarn materials 3.1.1 Materials used for reinforcement 3.1.2 Materials used for textile-based strain sensors 3.1.3 Textile reinforcement 3.2 Impregnation and matrices materials 3.2.1 Polymeric dispersion 3.2.2 Epoxy resin 3.2.3 Cementitious matrices 4 Development of a sensor network for impact scenarios 4.1 Requirements 4.2 Sensor design and network 4.3 Preferred solution 4.4 Measurement technology 5 Development of impact-resistant textile reinforcements for concrete structures 5.1 Definition of the research objective and boundary conditions 5.2 Textile reinforcement on the impact-facing side 5.2.1 Requirements 5.2.2 Conceptual design inspired by nature 5.2.3 Structural design and binding development of the textile reinforcement 5.2.4 Manufacturing process 5.3 Textile reinforcement on the impact-rear side 5.3.1 Requirements 5.3.2 Development process 5.3.3 Manufacturing process 6 Electromechanical characterization on the yarn scale 6.1 Experimental program 6.2 Stage I Fiber scale 6.2.1 Electrical resistance and electromechanical behavior under quasi-static tension 6.3 Stage II Composite scale without textile 6.3.1 Combined tension-compression tests 6.4 Stage III Composite scale with textile 6.4.1 Manufacturing of CFRP specimen with in-situ sensors 6.4.2 Testing procedure and strain measurement methods 6.4.3 Results 6.5 Summary 7 Material behavior on the composite scale 7.1 Quasi-static and impact bending behavior of TRC 7.1.1 Research objective 7.1.2 Textile reinforcement 7.1.3 Specimen manufacturing 7.1.4 Test setup 7.1.5 Results 7.1.6 Conclusion 7.2 Quasi-static tensile behavior of TRC with modified CF-NCF 7.2.1 Research objective 7.2.2 Specimen manufacturing and testing setup 7.2.3 Results 7.2.4 Conclusion 8 Material behavior on the structural scale 8.1 Design of the drop tower facility 8.2 Cementitious composite strengthening layers for the impact-facing side 8.2.1 Functionalized CW3DT reinforcement 8.2.2 Specimen manufacturing and testing parameters 8.2.3 Results 8.2.4 Conclusion 8.3 Cementitious composite strengthening layers for the impact-rear side 8.3.1 Specimen manufacturing and testing parameters 8.3.2 Results 8.3.3 Summarized discussion of the findings 9 Summary and outlook 9.1 Summary of the research work 9.2 Conclusions 9.3 Outlook Bibliography List of Figures List of Tables A Weaving pattern of the CW3DT

Page generated in 0.0387 seconds