Spelling suggestions: "subject:"cynamic blobal egetation model"" "subject:"cynamic blobal egetation godel""
1 |
Vegetation Response to Climate Change in North American National Parks: Policy & Management ImplicationsWood, Lyle Daniel January 2007 (has links)
Climate change is no longer debated in the context of whether or not it is occurring, but rather in the context of how rapid and extensive that change will be. This is the global situation to which the biomes of national parks in Canada and the United States must adapt. Through the use of the MC1 Dynamic Global Vegetation Model (DGVM) this thesis constructs projections of possible vegetation response of ten biome classifications to the impacts of continental-scale climate change in seven regions: Atlantic, Great Lakes, Mountain, Northern, Pacific, Prairie, and Southern. It then analyzes the potential ways in which DGVMs can be utilized by park management schemes in accommodating for future climate change in the selection, creation, and maintenance of national parks.
As the latest generation of vegetation modelling systems, the advantages of Dynamic Global Vegetation Models over pre-existing equilibrium biogeography models are examined in this thesis. DGVMs highlight the degree to which ecosystems are interconnected, and are able to provide continental-scale data necessary in coordinating an integrated planning approach for national parks in North America. They are utilized in this study for generating projections of future biome distribution, based on climate information from three General Circulation Models: CGCM2, CSIRO Mk2, and HadCM3. Following the generation of possible climate scenarios, the impact of changes to biome distribution within national parks is discussed. The thesis findings provide valuable modelling analysis and scenarios for use in future planning by the US National Park System and Parks Canada. Utilization of DGVMs will help in creating flexible, coordinated management strategies that take into account projected vegetation responses to climate shifts that lie ahead.
|
2 |
Vegetation Response to Climate Change in North American National Parks: Policy & Management ImplicationsWood, Lyle Daniel January 2007 (has links)
Climate change is no longer debated in the context of whether or not it is occurring, but rather in the context of how rapid and extensive that change will be. This is the global situation to which the biomes of national parks in Canada and the United States must adapt. Through the use of the MC1 Dynamic Global Vegetation Model (DGVM) this thesis constructs projections of possible vegetation response of ten biome classifications to the impacts of continental-scale climate change in seven regions: Atlantic, Great Lakes, Mountain, Northern, Pacific, Prairie, and Southern. It then analyzes the potential ways in which DGVMs can be utilized by park management schemes in accommodating for future climate change in the selection, creation, and maintenance of national parks.
As the latest generation of vegetation modelling systems, the advantages of Dynamic Global Vegetation Models over pre-existing equilibrium biogeography models are examined in this thesis. DGVMs highlight the degree to which ecosystems are interconnected, and are able to provide continental-scale data necessary in coordinating an integrated planning approach for national parks in North America. They are utilized in this study for generating projections of future biome distribution, based on climate information from three General Circulation Models: CGCM2, CSIRO Mk2, and HadCM3. Following the generation of possible climate scenarios, the impact of changes to biome distribution within national parks is discussed. The thesis findings provide valuable modelling analysis and scenarios for use in future planning by the US National Park System and Parks Canada. Utilization of DGVMs will help in creating flexible, coordinated management strategies that take into account projected vegetation responses to climate shifts that lie ahead.
|
3 |
Process-based simulation of the terrestrial biosphere : an evaluation of present-day and future terrestrial carbon balance estimates and their uncertaintyZaehle, Sönke January 2005 (has links)
<p>At present, carbon sequestration in terrestrial ecosystems slows the
growth rate of atmospheric CO<sub>2</sub> concentrations, and thereby reduces the impact of anthropogenic fossil fuel emissions on the climate system. Changes in climate and land use affect terrestrial biosphere structure and functioning at present, and will likely impact on the terrestrial carbon balance during the coming decades - potentially providing a positive feedback to the climate system due to soil carbon releases under a warmer climate. Quantifying changes, and the associated uncertainties, in regional terrestrial carbon budgets resulting from these effects is relevant for the scientific understanding of the Earth system and for long-term climate mitigation strategies.</p>
<p>A model describing the relevant processes that govern the terrestrial carbon cycle is a necessary tool to project regional carbon budgets into the future. This study (1) provides an extensive evaluation of the parameter-based uncertainty in model results of a leading terrestrial biosphere model, the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM), against a range of observations and under climate change, thereby complementing existing studies on other aspects of model uncertainty; (2) evaluates different hypotheses to explain the age-related decline in forest growth, both from theoretical and experimental evidence, and introduces the most promising hypothesis into the model; (3) demonstrates how forest statistics can be successfully integrated with process-based modelling to provide long-term constraints on regional-scale forest carbon budget estimates for a European forest case-study; and (4) elucidates the combined effects of land-use and climate changes on the present-day and future terrestrial carbon balance over Europe for four illustrative scenarios - implemented by four general circulation models - using a comprehensive description of different land-use types within the
framework of LPJ-DGVM.</p>
<p>This study presents a way to assess and reduce uncertainty in process-based terrestrial carbon estimates on a regional scale. The results of this study demonstrate that simulated present-day land-atmosphere carbon fluxes
are relatively well constrained, despite considerable uncertainty in
modelled net primary production. Process-based terrestrial modelling and forest statistics are successfully combined to improve model-based estimates of vegetation carbon stocks and their change over time. Application of
the advanced model for 77 European provinces shows that model-based estimates of biomass development with stand age compare favourably with forest inventory-based estimates for different tree species. Driven by historic changes in climate, atmospheric CO<sub>2</sub> concentration, forest area and wood demand between 1948 and 2000, the model predicts European-scale, present-day age structure of forests, ratio of biomass removals to increment, and vegetation carbon sequestration rates that are consistent with inventory-based estimates. Alternative scenarios of climate and land-use change in the 21<sup>st</sup>
century suggest carbon sequestration in the European terrestrial biosphere
during the coming decades will likely be on magnitudes relevant to climate
mitigation strategies. However, the uptake rates are small in comparison to the
European emissions from fossil fuel combustion, and will likely decline towards
the end of the century. Uncertainty in climate change projections is a key driver for uncertainty in simulated land-atmosphere carbon fluxes and needs to be accounted for in mitigation studies of the terrestrial biosphere.</p> / <p>Kohlenstoffspeicherung in terrestrischen Ökosystemen reduziert derzeit die Wirkung anthropogener CO<sub>2</sub>-Emissionen auf das Klimasystem, indem sie die Wachstumsrate der atmosphärischer CO<sub>2</sub>-Konzentration verlangsamt. Die heutige terrestrische Kohlenstoffbilanz wird wesentlich von Klima- und Landnutzungsänderungen beeinflusst. Diese Einflussfaktoren werden sich auch in den kommenden Dekaden auf die terrestrische Biosphäre auswirken, und dabei möglicherweise zu einer positiven Rückkopplung zwischen Biosphäre und Klimasystem aufgrund von starken Bodenkohlenstoffverlusten in einem wärmeren
Klima führen. Quantitative Abschätzungen der Wirkung dieser Einflussfaktoren -
sowie der mit ihnen verbundenen Unsicherheit - auf die terrestrische Kohlenstoffbilanz sind daher sowohl für das Verständnis des Erdsystems, als
auch für eine langfristig angelegte Klimaschutzpolitik relevant.</p>
<p>Um regionale Kohlenstoffbilanzen in die Zukunft zu projizieren, sind Modelle erforderlich, die die wesentlichen Prozesse des terrestrischen Kohlenstoffkreislaufes beschreiben. Die vorliegende Arbeit (1) analysiert die parameterbasierte Unsicherheit in Modellergebnissen eines der führenden globalen terrestrischen Ökosystemmodelle (LPJ-DGVM) im Vergleich mit unterschiedlichen ökosystemaren Messgrößen, sowie unter Klimawandelprojektionen, und erweitert damit bereits vorliegende Studien zu anderen Aspekten der Modelunsicherheit; (2) diskutiert unter theoretischen und experimentellen Aspekten verschiedene Hypothesen über die altersbedingte Abnahme des Waldwachstums, und implementiert die vielversprechenste Hypothese in das Model; (3) zeigt für eine europäische Fallstudie, wie Waldbestandsstatistiken erfolgreich für eine verbesserte Abschätzung von regionalen Kohlenstoffbilanzen in Wäldern durch prozessbasierten
Modelle angewandt werden können; (4) untersucht die Auswirkung möglicher zukünftiger Klima- und Landnutzungsänderungen auf die europäische Kohlenstoffbilanz anhand von vier verschiedenen illustrativen Szenarien, jeweils unter Berücksichtigung von Klimawandelprojektionen vier verschiedener Klimamodelle. Eine erweiterte Version von LPJ-DGVM findet hierfür Anwendung, die eine umfassende Beschreibung der Hauptlandnutzungstypen beinhaltet. </p>
<p>Die vorliegende Arbeit stellt einen Ansatz vor, um Unsicherheiten in der prozessbasierten Abschätzung von terrestrischen Kohlenstoffbilanzen auf regionaler Skala zu untersuchen und zu reduzieren. Die Ergebnisse dieser
Arbeit zeigen, dass der Nettokohlenstoffaustausch zwischen terrestrischer
Biosphäre und Atmosphäre unter heutigen klimatischen Bedingungen relativ sicher
abgeschätzt werden kann, obwohl erhebliche Unsicherheit über die modelbasierte
terrestrische Nettoprimärproduktion existiert. Prozessbasierte Modellierung und Waldbestandsstatistiken wurden erfolgreich kombiniert, um verbesserte Abschätzungen von regionalen Kohlenstoffvorräten und ihrer Änderung mit der Zeit zu ermöglichen. Die Anwendung des angepassten Modells in 77 europäischen Regionen zeigt, dass modellbasierte Abschätzungen des Biomasseaufwuchses in Wäldern weitgehend mit inventarbasierten Abschätzungen für verschiede Baumarten übereinstimmen. Unter Berücksichtigung von historischen Änderungen in Klima, atmosphärischem CO<sub>2</sub>-Gehalt, Waldfläche und Holzernte (1948-2000) reproduziert das Model auf europäischer Ebene die heutigen, auf Bestandsstatistiken beruhenden, Abschätzungen von Waldaltersstruktur, das Verhältnis von Zuwachs und Entnahme von Biomasse, sowie
die Speicherungsraten im Kohlenstoffspeicher der Vegetation. Alternative Szenarien von zukünftigen Landnutzungs- und Klimaänderungen legen nahe, dass die Kohlenstoffaufnahme der europäischen terrestrischen Biosphäre von relevanter Größenordnung für Klimaschutzstrategien sind. Die Speicherungsraten sind jedoch klein im Vergleich zu den absoluten europäischen CO<sub>2</sub>-Emissionen, und nehmen zudem sehr wahrscheinlich gegen Ende des 21. Jahrhunderts ab. Unsicherheiten in Klimaprojektionen sind eine Hauptursache für die Unsicherheiten in den modellbasierten Abschätzungen des zukünftigen Nettokohlenstoffaustausches und müssen daher in Klimaschutzanalysen der terrestrischen Biosphäre berücksichtigt werden.</p>
|
Page generated in 0.1111 seconds