Spelling suggestions: "subject:"cynamic OD destimation"" "subject:"cynamic OD coestimation""
1 |
Dynamic OD Estimation with Bluetooth Data Using Kalman FilterMurari, Sudeeksha 19 September 2012 (has links)
Advanced Traffic Management Systems (ATMS) and Advanced Traveler Information Systems (ATIS) utilize real-time information to apply measures improve the transportation system performance. Two key inputs for ATMS and ATIS are dynamic travel times and dynamic OD matrices. Bluetooth devices detection technology has been increasingly used to track vehicle movements on the network. This possibility naturally raises the question of whether this information can be used to improve the dynamic estimation of OD matrices. Previous research efforts rely entirely on the Bluetooth OD counts for estimation, which is why they require high penetration rates. In our study, we use Bluetooth data to supplement loop detector data while estimating dynamic OD matrices using Kalman filter. We use OD proportions as state variables and travel times, link counts, Bluetooth OD matrix and input and exit volumes as measurements. A simulation experiment is conducted in VISSIM and is designed such that the traffic network emulates the observed traffic patterns. Two case studies are performed for comparison. One uses Bluetooth OD matrices as input for estimation while the other does not. The Bluetooth ODs used in the Kalman filter estimation was found to improve the OD flow estimates. The developed methods were compared with synthetic OD estimation software (QueensOD) and were found to be more effective in obtaining dynamic OD flow estimates. A case of study with fewer detectors was also studied. When it was compared with a similar method developed by Gharat(2011), the errors were lower. / Master of Science
|
Page generated in 0.1066 seconds