• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards Support of Visual Analytics for Synthetic Information

Agashe, Aditya Vidyanand 15 September 2015 (has links)
This thesis describes a scalable system for visualizing and exploring global synthetic populations. The implementation described in this thesis addresses the following existing limitations of the Syn- thetic Information Viewer (SIV): (i) it adds ability to support synthetic populations for the entire globe by resolving data inconsistencies, (ii) introduces opportunities to explore and find patterns in the data, and (iii) allows the addition of new synthetic population centers with minimal effort. We propose the following extensions to the system: (i) Data Registry: an abstraction layer for handling heterogeneity of data across countries, and adding new population centers for visualizations, and (ii) Visual Query Interface: for exploring and analyzing patterns to gain insights. With these additions, our system is capable of visual exploration and querying of heterogeneous, temporal, spatial and social data for 14 countries with a total population of 830 million. Work in this thesis takes a step towards providing visual analytics capability for synthetic information. This system will assist urban planners, public health analysts, and, any individuals interested in socially-coupled systems, by empowering them to make informed decisions through exploration of synthetic information. / Master of Science
2

KEEPING TRACK OF NETWORK FLOWS: AN INEXPENSIVE AND FLEXIBLE SOLUTION

Fedyukin, Alexander V. January 2005 (has links)
No description available.
3

Augmenting Dynamic Query Expansion in Microblog Texts

Khandpur, Rupinder P. 17 August 2018 (has links)
Dynamic query expansion is a method of automatically identifying terms relevant to a target domain based on an incomplete query input. With the explosive growth of online media, such tools are essential for efficient search result refining to track emerging themes in noisy, unstructured text streams. It's crucial for large-scale predictive analytics and decision-making, systems which use open source indicators to find meaningful information rapidly and accurately. The problems of information overload and semantic mismatch are systemic during the Information Retrieval (IR) tasks undertaken by such systems. In this dissertation, we develop approaches to dynamic query expansion algorithms that can help improve the efficacy of such systems using only a small set of seed queries and requires no training or labeled samples. We primarily investigate four significant problems related to the retrieval and assessment of event-related information, viz. (1) How can we adapt the query expansion process to support rank-based analysis when tracking a fixed set of entities? A scalable framework is essential to allow relative assessment of emerging themes such as airport threats. (2) What visual knowledge discovery framework to adopt that can incorporate users' feedback back into the search result refinement process? A crucial step to efficiently integrate real-time `situational awareness' when monitoring specific themes using open source indicators. (3) How can we contextualize query expansions? We focus on capturing semantic relatedness between a query and reference text so that it can quickly adapt to different target domains. (4) How can we synchronously perform knowledge discovery and characterization (unstructured to structured) during the retrieval process? We mainly aim to model high-order, relational aspects of event-related information from microblog texts. / Ph. D. / Analysis of real-time, social media can provide critical insights into ongoing societal events. Where consequences and implications of specific events include monetary losses, threats to critical infrastructure and national security, disruptions to daily life, and a potential to cause loss of life and physical property. It is imperative for developing good ‘ground truth’ to develop adequate data-driven information systems, i.e., an authoritative record of events reported in the media cataloged alongside important dimensions. Availability of high-quality ground truth events can support various analytic efforts, e.g., identifying precursors of attacks, developing predictive indicators using surrogate data sources, and tracking the progression of events over space and time. A dynamic search result refinement is useful for expanding a general set of user queries into a more relevant collection. The challenges of information overload and misalignment of context between the user query and retrieved results can overwhelm both human and machine. In this dissertation, we focus our efforts on these specific challenges. With the ever-increasing volume of user-generated data large-scale analysis is a tedious task. Our first focus is to develop a scalable model that dynamically tracks and ranks evolving topics as they appear in social media. Then to simplify the cognitive tasks involving sense-making of evolving themes, we take a visual approach to retrieve situationally critical and emergent information effectively. This visual analytics approach learns from user’s interactions during the exploratory process and then generates a better representation of the data. Thus, improving the situational understanding and usability of underlying data models. Such features are crucial for big-data based decision & support systems. To make the event-focused retrieval process more robust, we developed a context-rich procedure that adds new relevant key terms to the user’s original query by utilizing the linguistic structures in text. This context-awareness allows the algorithm to retrieve those relevant characteristics that can help users to gain adequate information from social media about real-world events. Online social commentary about events is very informal and can be incomplete. However, to get the complete picture and adequately describe these events we develop an approach that models the underlying relatedness of information and iteratively extract meaning and denotations from event-related texts. We learn how to express the high-order relationships between events and entities and group them to identify those attributes that best explain the events the user is trying to uncover. In all the augmentations we develop, our strategy is to allow only very minimal human supervision using just a small set of seed event triggers and requires no training or labeled samples. We show a comprehensive evaluation of these augmentations on real-world domains - threats on airports, cyber attacks, and protests. We also demonstrate their applicability as for real-time analysis that provides vital event characteristics, and contextually consistent information can be a beneficial aid for emergency responders.
4

Event-Driven Dynamic Query Model for Sleep Study Outcomes Research

Jain, Sulabh 30 January 2012 (has links)
No description available.
5

In-network database query processing for wireless sensor networks

Al-Hoqani, Noura Y. S. January 2018 (has links)
In the past research, smart sensor devices have become mature enough for large, distributed networks of such sensors to start to be deployed. Such networks can include tens or hundreds of independent nodes that can perform their functions without human interactions such as recharging of batteries, the configuration of network routes and others. Each of the sensors in the wireless sensor network is considered as microsystem, which consists of memory, processor, transducers and low bandwidth as well as a low range radio transceiver. This study investigates an adaptive sampling strategy for WSS aimed at reducing the number of data samples by sensing data only when a significant change in these processes is detected. This detection strategy is based on an extension to Holt's Method and statistical model. To investigate this strategy, the water consumption in a household is used as a case study. A query distribution approach is proposed, which is presented in detail in chapter 5. Our developed wireless sensor query engine is programmed on Sensinode testbed cc2430. The implemented model used on the wireless sensor platform and the architecture of the model is presented in chapters six, seven, and eight. This thesis presents a contribution by designing the experimental simulation setup and by developing the required database interface GUI sensing system, which enables the end user to send the inquiries to the sensor s network whenever needed, the On-Demand Query Sensing system ODQS is enhanced with a probabilistic model for the purpose of sensing only when the system is insufficient to answer the user queries. Moreover, a dynamic aggregation methodology is integrated so as to make the system more adaptive to query message costs. Dynamic on-demand approach for aggregated queries is implemented, based in a wireless sensor network by integrating the dynamic programming technique for the most optimal query decision, the optimality factor in our experiment is the query cost. In-network query processing of wireless sensor networks is discussed in detail in order to develop a more energy efficient approach to query processing. Initially, a survey of the research on existing WSN query processing approaches is presented. Building on this background, novel primary achievements includes an adaptive sampling mechanism and a dynamic query optimiser. These new approaches are extremely helpful when existing statistics are not sufficient to generate an optimal plan. There are two distinct aspects in query processing optimisation; query dynamic adaptive plans, which focus on improving the initial execution of a query, and dynamic adaptive statistics, which provide the best query execution plan to improve subsequent executions of the aggregation of on-demand queries requested by multiple end-users. In-network query processing is attractive to researchers developing user-friendly sensing systems. Since the sensors are a limited resource and battery powered devices, more robust features are recommended to limit the communication access to the sensor nodes in order to maximise the sensor lifetime. For this reason, a new architecture that combines a probability modelling technique with dynamic programming (DP) query processing to optimise the communication cost of queries is proposed. In this thesis, a dynamic technique to enhance the query engine for the interactive sensing system interface is developed. The probability technique is responsible for reducing communication costs for each query executed outside the wireless sensor networks. As remote sensors have limited resources and rely on battery power, control strategies should limit communication access to sensor nodes to maximise battery life. We propose an energy-efficient data acquisition system to extend the battery life of nodes in wireless sensor networks. The system considers a graph-based network structure, evaluates multiple query execution plans, and selects the best plan with the lowest cost obtained from an energy consumption model. Also, a genetic algorithm is used to analyse the performance of the approach. Experimental testing are provided to demonstrate the proposed on-demand sensing system capabilities to successfully predict the query answer injected by the on-demand sensing system end-user based-on a sensor network architecture and input query statement attributes and the query engine ability to determine the best and close to the optimal execution plan, given specific constraints of these query attributes . As a result of the above, the thesis contributes to the state-of-art in a network distributed wireless sensor network query design, implementation, analysis, evaluation, performance and optimisation.
6

General dynamic Yannakakis: Conjunctive queries with theta joins under updates

Idris, Muhammad, Ugarte, Martín, Vansummeren, Stijn, Voigt, Hannes, Lehner, Wolfgang 17 July 2023 (has links)
The ability to efficiently analyze changing data is a key requirement of many real-time analytics applications. In prior work, we have proposed general dynamic Yannakakis (GDYN), a general framework for dynamically processing acyclic conjunctive queries with θ-joins in the presence of data updates. Whereas traditional approaches face a trade-off between materialization of subresults (to avoid inefficient recomputation) and recomputation of subresults (to avoid the potentially large space overhead of materialization), GDYN is able to avoid this trade-off. It intelligently maintains a succinct data structure that supports efficient maintenance under updates and from which the full query result can quickly be enumerated. In this paper, we consolidate and extend the development of GDYN. First, we give full formal proof of GDYN ’s correctness and complexity. Second, we present a novel algorithm for computing GDYN query plans. Finally, we instantiate GDYN to the case where all θ-joins are inequalities and present extended experimental comparison against state-of-the-art engines. Our approach performs consistently better than the competitor systems with multiple orders of magnitude improvements in both time and memory consumption.

Page generated in 0.0321 seconds