Spelling suggestions: "subject:"cynamic homography"" "subject:"cynamic lomography""
1 |
Motion Estimation From Moments Of Projection Data For Dynamic CTGokul Deepak, M 31 October 2014 (has links) (PDF)
In X-ray computed tomography, motion of the object (breathing, for example)
while X-ray projections are acquired for tomographic reconstruction leads to mo-
tion artifacts in the reconstructed image. Object motion (such as that of breathing
lungs) during acquisition of a computed tomography scan causes artifacts in the
reconstructed image due to the reason that the source and detectors require a finite
amount of time to rotate around the object while acquiring measurements even as
the object is changing with time. With traditional reconstruction algorithms, the
object is assumed to be stationary while data is acquired. However, in the case of
dynamic tomography, the projection data that is acquired is not consistent, as it is
data measured from an object that is deformed at each view angle of measurement.
In this work, we propose a method for estimation of general (non-rigid) small
motion for dynamic tomography from motion-corrupted projection data. For a
static object, the Helgason-Ludwig consistency conditions impose some structure
on the moments of the projections. However in the case of dynamic object (result-
ing in motion-corrupted projections) this is violated. In the proposed method, we
estimate motion parameters of the general motion model from the moments of the
dynamic projections. The dynamic object can be modeled as f (g(x, t)) where g is
a time-dependent warping function. The non-linear problem of solving a system
involving composition of functions is dealt with in the Fourier transform space
where it simplifies into a problem involving multiplicatively separable functions.
The system is then linearized to solve for object motion. We assume a general
basis function in our model. For numerical simulations, we use polynomial and
B-spline basis functions as special cases of the basis functions.
Simulation is performed by applying known deformations to the Shepp-Logan
phantom, to a head slice of the Visible Human phantom and a thorax slice of the
Zubal phantom. Simulations are performed for projections generated by parallel-
beam and fan-beam geometry. Simulation for fan-beam geometry are performed by
rebinning the motion corrupted fan beam projections to parallel beam projections,
followed by the proposed motion estimation method. Simulation for the Visible
Human phantom and the thorax slice of the Zubal phantom are performed for fan-
beam geometry. Poisson noise is also added to the generated dynamic projections
before motion estimation is performed. To solve the ill-posed problem of motion
estimation by the proposed method, we use a Tikhonov type regularization that
involves minimizing an objective function that is the sum of a data discrepancy
term, a term that penalizes temporal variation of motion, and another term to
penalize large magnitudes of motion.
Using the estimated motion, the original image has been reconstructed from the
motion corrupted projection data, with the knowledge of the underlying motion
which is estimated by the proposed algorithm, by an algebraic technique similar to
the dynamic SART algorithm from the literature. Here, a SART-type coefficient
matrix is computed using ray tracing with rays whose paths are warped according
to the estimated motion. The dynamic image at t = 0 is then reconstructed with
using the computed dynamic SART matrix.
|
2 |
Reconstrução tomográfica dinâmica industrialOLIVEIRA, Eric Ferreira de 29 February 2016 (has links)
Submitted by Rafael Santana (rafael.silvasantana@ufpe.br) on 2017-05-11T18:10:34Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Versão Atualizada Tese Eric Ferreira de Oliveira.pdf: 1865683 bytes, checksum: 517608a245f6372afd45b3bba78733d6 (MD5) / Made available in DSpace on 2017-05-11T18:10:34Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Versão Atualizada Tese Eric Ferreira de Oliveira.pdf: 1865683 bytes, checksum: 517608a245f6372afd45b3bba78733d6 (MD5)
Previous issue date: 2016-02-29 / CNEN / O estado da arte dos métodos aplicados para processos industriais é atualmente
baseado em princípios de reconstruções tomográficas clássicas desenvolvidos para padrões
tomográficos de distribuições estáticas, ou seja, são limitados a processos de pouca variabilidade.
Ruídos e artefatos de movimento são os principais problemas causados pela incompatibilidade nos
dados gerada pelo movimento. Além disso, em processos tomográficos industriais é comum um
número limitado de dados podendo produzir ruído, artefatos e não concordância com a distribuição
em estudo. Um dos objetivos do presente trabalho é discutir as dificuldades que surgem da
implementação de algoritmos de reconstrução em tomografia dinâmica que foram originalmente
desenvolvidos para distribuições estáticas. Outro objetivo é propor soluções que visam reduzir a
perda de informação temporal devido a utilização de técnicas estáticas em processos dinâmicos. No
que diz respeito à reconstrução de imagem dinâmica foi realizada uma comparação entre diferentes
métodos de reconstrução estáticos, como MART e FBP, quando usado para cenários dinâmicos.
Esta comparação foi baseada em simulações por MCNPX, e também analiticamente, de um cilindro
de alumínio que se move durante o processo de aquisição, e também com base em imagens de
cortes transversais de técnicas de CFD. Outra contribuição foi aproveitar o canal triplo de cores
necessário para exibir imagens coloridas na maioria dos monitores, de modo que, dimensionando
adequadamente os valores adquiridos de cada vista no sistema linear de reconstrução, foi possível
imprimir traços temporais na imagem tradicionalmente reconstruída. Finalmente, uma técnica de
correção de movimento usado no campo da medicina foi proposto para aplicações industriais,
considerando-se que a distribuição de densidade nestes cenários pode apresentar variações
compatíveis com movimentos rígidos ou alterações na escala de certos objetos. A ideia é usar dados
conhecidos a priori ou durante o processo, como vetor deslocamento, e então usar essas
informações para melhorar a qualidade da reconstrução. Isto é feito através da manipulação
adequada da matriz peso no método algébrico, isto é, ajustando-se os valores para refletir o
movimento objeto do previsto ou deformação. Os resultados de todas essas técnicas aplicadas em
vários experimentos e simulações são discutidos neste trabalho. / The state of the art methods applied to industrial processes is currently based on the principles of
classical tomographic reconstructions developed for tomographic patterns of static distributions, or
is limited to cases of low variability of the density distribution function of the tomographed object.
Noise and motion artifacts are the main problems caused by a mismatch in the data from views
acquired in different instants. All of these add to the known fact that using a limited amount of data
can result in the presence of noise, artifacts and some inconsistencies with the distribution under
study. One of the objectives of the present work is to discuss the difficulties that arise from
implementing reconstruction algorithms in dynamic tomography that were originally developed for
static distributions. Another objective is to propose solutions that aim at reducing a temporal type of
information loss caused by employing regular acquisition systems to dynamic processes. With
respect to dynamic image reconstruction it was conducted a comparison between different static
reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison
was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that
moves along the section of a riser during the process of acquisition, and also based on cross section
images from CFD techniques. As for the adaptation of current tomographic acquisition systems for
dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion
for visualization purposes, a form of visually disposing density information as soon as it becomes
amenable to image reconstruction. A third contribution was to take advantage of the triple color
channel necessary to display colored images in most displays, so that, by appropriately scaling the
acquired values of each view in the linear system of the reconstruction, it was possible to imprint a
temporal trace into the regularly reconstructed image, where the temporal trace utilizes a channel
and the regular reconstruction utilizes a different one. Finally, a motion correction technique used in
the medical field was proposed for industrial applications, considering that the density distribution
in these scenarios may present variations compatible with rigid motions or changes in scale of
certain objects. The idea is to identify in some configurations of the temporarily distributed data
clues of the type of motion or deformation suffered by the object during the data acquisition, and
then use this information to improve the quality of the reconstruction. This is done by appropriately
manipulating the weight matrix in the algebraic method, i.e., by adjusting the values to reflect the
predicted object motion or deformation. The results of all these techniques applied in several
experiments and simulations are discussed in this work.
|
3 |
Reconstruction en tomographie dynamique par approche inverse sans compensation de mouvement / Reconstruction in dynamic tomography by an inverse approach without motion compensationMomey, Fabien 20 June 2013 (has links)
La tomographie est la discipline qui cherche à reconstruire une donnée physique dans son volume, à partir de l’information indirecte de projections intégrées de l’objet, à différents angles de vue. L’une de ses applications les plus répandues, et qui constitue le cadre de cette thèse, est l’imagerie scanner par rayons X pour le médical. Or, les mouvements inhérents à tout être vivant, typiquement le mouvement respiratoire et les battements cardiaques, posent de sérieux problèmes dans une reconstruction classique. Il est donc impératif d’en tenir compte, i.e. de reconstruire le sujet imagé comme une séquence spatio-temporelle traduisant son “évolution anatomique” au cours du temps : c’est la tomographie dynamique. Élaborer une méthode de reconstruction spécifique à ce problème est un enjeu majeur en radiothérapie, où la localisation précise de la tumeur dans le temps est un prérequis afin d’irradier les cellules cancéreuses en protégeant au mieux les tissus sains environnants. Des méthodes usuelles de reconstruction augmentent le nombre de projections acquises, permettant des reconstructions indépendantes de plusieurs phases de la séquence échantillonnée en temps. D’autres compensent directement le mouvement dans la reconstruction, en modélisant ce dernier comme un champ de déformation, estimé à partir d’un jeu de données d’acquisition antérieur. Nous proposons dans ce travail de thèse une approche nouvelle ; se basant sur la théorie des problèmes inverses, nous affranchissons la reconstruction dynamique du besoin d’accroissement de la quantité de données, ainsi que de la recherche explicite du mouvement, elle aussi consommatrice d’un surplus d’information. Nous reconstruisons la séquence dynamique à partir du seul jeu de projections courant, avec pour seules hypothèses a priori la continuité et la périodicité du mouvement. Le problème inverse est alors traité rigoureusement comme la minimisation d’un terme d’attache aux données et d’une régularisation. Nos contributions portent sur la mise au point d’une méthode de reconstruction adaptée à l’extraction optimale de l’information compte tenu de la parcimonie des données — un aspect typique du problème dynamique — en utilisant notamment la variation totale (TV) comme régularisation. Nous élaborons un nouveau modèle de projection tomographique précis et compétitif en temps de calcul, basé sur des fonctions B-splines séparables, permettant de repousser encore la limite de reconstruction imposée par la parcimonie. Ces développements sont ensuite insérés dans un schéma de reconstruction dynamique cohérent, appliquant notamment une régularisation TV spatio-temporelle efficace. Notre méthode exploite ainsi de façon optimale la seule information courante à disposition ; de plus sa mise en oeuvre fait preuve d’une grande simplicité. Nous faisons premièrement la démonstration de la force de notre approche sur des reconstructions 2-D+t à partir de données simulées numériquement. La faisabilité pratique de notre méthode est ensuite établie sur des reconstructions 2-D et 3-D+t à partir de données physiques “réelles”, acquises sur un fantôme mécanique et sur un patient / Computerized tomography (CT) aims at the retrieval of 3-D information from a set of projections acquired at different angles around the object of interest (OOI). One of its most common applications, which is the framework of this Ph.D. thesis, is X-ray CT medical imaging. This reconstruction can be severely impaired by the patient’s breath (respiratory) motion and cardiac beating. This is a major challenge in radiotherapy, where the precise localization of the tumor is a prerequisite for cancer cells irradiation with preservation of surrounding healthy tissues. The field of methods dealing with the reconstruction of a dynamic sequence of the OOI is called Dynamic CT. Some state-of-the-art methods increase the number of projections, allowing an independent reconstruction of several phases of the time sampled sequence. Other methods use motion compensation in the reconstruction, by a beforehand estimation on a previous data set, getting the explicit motion through a deformation model. Our work takes a different path ; it uses dynamic reconstruction, based on inverse problems theory, without any additional information, nor explicit knowledge of the motion. The dynamic sequence is reconstructed out of a single data set, only assuming the motion’s continuity and periodicity. This inverse problem is considered as a minimization of an error term combined with a regularization. One of the most original features of this Ph.D. thesis, typical of dynamic CT, is the elaboration of a reconstruction method from very sparse data, using Total Variation (TV) as a very efficient regularization term. We also implement a new rigorously defined and computationally efficient tomographic projector, based on B-splines separable functions, outperforming usual reconstruction quality in a data sparsity context. This reconstruction method is then inserted into a coherent dynamic reconstruction scheme, applying an efficient spatio-temporal TV regularization. Our method exploits current data information only, in an optimal way ; moreover, its implementation is rather straightforward. We first demonstrate the strength of our approach on 2-D+t reconstructions from numerically simulated dynamic data. Then the practical feasibility of our method is established on 2-D and 3-D+t reconstructions of a mechanical phantom and real patient data
|
Page generated in 0.0544 seconds