• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 12
  • 9
  • 8
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advances in Dynamic Wetting in Coating Flows

Benkreira, Hadj January 2005 (has links)
Yes
2

Experimental study of dynamic wetting in reverse-roll coating

Benkreira, Hadj January 2002 (has links)
No description available.
3

Angling the dynamic wetting line retards air entrainment in pre-metered coating processes

Benkreira, Hadj, Cohu, O. January 1998 (has links)
No description available.
4

Dynamic wetting in metering and pre-metered roll coating

Benkreira, Hadj 29 October 2008 (has links)
Yes
5

The effect of substrate roughness on air entrainment in dip coating

Benkreira, Hadj January 2004 (has links)
Yes / Dynamic wetting failure was observed in the simple dip coating flow with a series of substrates, which had a rough side and a comparatively smoother side. When we compared the air entrainment speeds on both sides, we found a switch in behaviour at a critical viscosity. At viscosity lower than a critical value, the rough side entrained air at lower speeds than the smooth side. Above the critical viscosity the reverse was observed, the smooth side entraining air at lower speed than the rough side. Only substrates with significant roughness showed this behaviour. Below a critical roughness, the rough side always entrained air at lower speeds than the smooth side. These results have both fundamental and practical merits. They support the hydrodynamic theory of dynamic wetting failure and imply that one can coat viscous fluids at higher speeds than normal by roughening substrates. A mechanism and a model are presented to explain dynamic wetting failure on rough surfaces.
6

The fluid mechanics of tensioned web roll coating

Benkreira, Hadj, Shibata, Yusuke, Ito, K. 26 March 2021 (has links)
Yes / Tensioned web-roll coating is widely used but has surprisingly received little research attention. Here, a new semi-empirical model that predicts film transfer from applicator roller to web is developed and tested against data collected from a pilot coating line. The film transfer is found to vary linearly with web to applicator speed ratio S. Flow stability investigations revealed three types of defects: rivulets, air entrainment due to dynamic wetting failure and cascade, occurring at different values of S and capillary number Ca. Rivulets occurred at Ca< 0.4 and S> 0.71-0.81, air entrainment at Ca>0.4 and S>0.71-0.83 and cascades at S>1.1 for Ca up to 6. Web speeds at which dynamic wetting failure occurred were, for the same Ca, comparatively higher than those that occur in dip coating. The data show that such hydrodynamic assistance is due to the coating bead being confined, more so with increasing web wrap angle β. / The authors acknowledge the support of the Films R&D Centre of Toyobo Co. Ltd., Otsu, Japan and of the Thin Liquid Films Research Group of the University of Bradford, UK.
7

Capillarity and wetting of non-Newtonian droplets

Wang, Yuli January 2016 (has links)
Capillarity and dynamic wetting of non-Newtonian fluids are important in many natural and industrial processes, examples cover from a daily phenomenon as splashing of a cup of yogurt to advanced technologies such as additive manufacturing. The applicable non-Newtonian fluids are usually viscoelastic compounds of polymers and solvents. Previous experiments observed diverse interesting behaviors of a polymeric droplet on a wetted substrate or in a microfluidic device. However, our understanding of how viscoelasticity affects droplet dynamics remains very limited. This work intends to shed light on viscoelastic effect on two small scale processes, i.e., the motion of a wetting contact line and droplet splitting at a bifurcation tip.   Numerical simulation is employed to reveal detailed information such as elastic stresses and interfacial flow field. A numerical model is built, combining the phase field method, computational rheology techniques and computational fluid dynamics. The system is capable for calculation of realistic circumstances such as a droplet made of aqueous solution of polymers with moderate relaxation time, impacting a partially wetting surface in ambient air.   The work is divided into three flow cases. For the flow case of bifurcation tube, the evolution of the interface and droplet dynamics are compared between viscoelastic fluids and Newtonian fluids. The splitting or non-splitting behavior influenced by elastic stresses is analyzed. For the flow case of dynamic wetting, the flow field and rheological details such as effective viscosity and normal stress difference near a moving contact line are presented. The effects of shear-thinning and elasticity on droplet spreading and receding are analyzed, under inertial and inertialess circumstances. In the last part, droplet impact of both Newtonian and viscoelastic fluids are demonstrated. For Newtonian droplets, a phase diagram is drawn to visualize different impact regions for spreading, splashing and gas entrapment. For viscoelastic droplets, the viscoelastic effects on droplet deformation, spreading radius and contact line motion are revealed and discussed. / <p>QC 20160329</p>
8

Angled curtain coating : an experimental study : an experimental investigation into the effect of die angle on air entrainment velocity in curtain coating under a range of operating conditions

Elgadafi, Mansour Masoud January 2010 (has links)
In all coating applications, a liquid film displaces air in contact with a dry solid substrate. At a low substrate speed a thin uniform wetting line is formed on the substrates surface, but at a high speed the wetting line becomes segmented and unsteady as air becomes entrained between the substrate and the liquid. These air bubbles affect the quality of the coated product and any means to postpone this at higher speeds without changing the specifications of the coating liquid is desirable. This research assesses the validity of a theoretically based concept developed by Blake and Rushack [1] and exploited by Cohu and Benkreira [2] for dip coating. The concept suggests that angling the wetting line by an angle ß would increase the speed at which air is entrained by a factor 1/cos ß. In practice, if achieved this is a significant increase that would result in more economical operation. This concept was tested in a fast coating operation that of curtain coating which is already enhanced by what is known as hydrodynamic assistance [2]. Here we are effectively checking an additional assistance to wetting. The work, performed on a purposed built curtain coater and a rotating die, with a range of fluids showed the concept to hold but provided the data are processed in a way that separate the effect of curtain impingement from the slanting of the wetting line.
9

Influence of nanoscale roughness on wetting behavior in liquid/liquid systems

Tsao, Joanna W. 12 January 2015 (has links)
Wetting behavior of fluid/fluid/solid systems, largely influenced by surface properties and interactions between the three phases, plays a big role in nature and in industrial applications Traditionally, wetting studies have focused on liquid/vapor systems, especially the study of a sessile liquid droplet in air. Liquid/vapor systems can only probe the effects of surface properties and interactions between the solid and the wetting liquid. This type of characterization is inadequate for liquid/liquid systems, where surface wettability is additionally influenced by interactions between the two wetting liquids. The present study is the first to examine the effects of nanoscale roughness on wetting behavior in liquid/liquid systems and the modulation of roughness effects by fluid properties and the wetting order. This study examines both equilibrium and dynamic wetting behavior in liquid/liquid systems using well characterized substrates. Rough substrates were fabricated by coating glass substrates with nanometer sized polymer particles. Partial dissolution of the particles and molecular de-deposition of the polymer allowed for tuning of substrate roughness while retaining the original surface chemistry. The effectiveness of this fabrication technique was verified using electron microscopy and electrokinetic analysis. We examined the wetting behavior in three fluid/fluid systems: an air/water system, a decane/water system, and an octanol/water system. The oils were chosen based on their different polarities. Equilibrium wetting behavior was determined using contact angle measurements. Results indicate that for all systems where the primary wetting fluid was a liquid, an increase of the surface roughness resulted in Cassie-Baxter wetting. How hydrophilic a surface appears with regard to a water/fluid interface depended on the polarity of that fluid. The octanol/water system provided the strongest evidence regarding the effect of wetting order: a transition from Wenzel to Cassie-Baxter wetting was only observed when water was the primary wetting liquid. The observed transition was confirmed using a modified Wenzel/Cassie-Baxter model. The kinetics of droplet spreading was measured using high speed optical microscopy. After a droplet was placed on a solid surface, the motion of the contact line was imaged at a rate of 1000 fps. The wetted area was then extracted using custom Matlab® scripts. The spreading kinetics underwent a transition between two regimes: a visco-inertial regime and a slower spreading regime. Results indicated that surface roughness influenced spreading kinetics in both regimes. The overall spreading rate was always slower for rough surfaces than for smoother surfaces. In liquid/liquid systems, the duration of visco-inertial regime was dependent on the surface roughness as well; in general, it was shorter for smooth substrates compared to rough substrates. Increasing the viscosity of the non-aqueous fluid significantly increased the duration of the visco-inertial regime and decreased the overall spreading rate. This study provides insight into the competitive wetting of solid surfaces relevant in many industrial applications such as oil recovery or inkjet printing, and may guide the development of improved wetting models in an area that currently lacks an adequate theoretical description.
10

Slot Coating Minimum Film Thickness in Air and in Rarefied Helium

Benkreira, Hadj, Ikin, J. Bruce 30 April 2016 (has links)
Yes / This study assesses experimentally the role of gas viscosity in controlling the minimum film thickness in slot coating in both the slot over roll and tensioned web modes. The minimum film thickness here is defined with respect to the onset of air entrainment rather than rivulets, the reason being that rivulets are an extreme form of instabilities occurring at much higher speeds. The gas viscosity effects are simulated experimentally by encasing the coaters in a sealed gas chamber in which various gases can be admitted. An appropriate choice of two gases was used to compare performances: air at atmospheric pressure and helium at sub-ambient pressure (25mbar), which we establish has a significantly lower “thin film” viscosity than atmospheric air. A capacitance sensor was used to continuously measure the film thickness on the web, which was ramped up in speed at a fixed acceleration whilst visualizations of the film stability were recorded through a viewing port in the chamber. The data collected show clearly that by coating in rarefied helium rather that atmospheric air we can reduce the minimum film thickness or air/gas entrainment low-flow limit. We attribute this widening of the stable coating window to the enhancement of dynamic wetting that results when the thin film gas viscosity is reduced. These results have evident practical significance for slot coating, the coating method of choice in many new technological applications, but it is their fundamental merit which is new and one that should be followed with further data and theoretical underpinning.

Page generated in 0.09 seconds