Spelling suggestions: "subject:"cynamic compressor selector (DCS)"" "subject:"clynamic compressor selector (DCS)""
1 |
Development of a dynamic centrifugal compressor selector for large compressed air networks in the mining industry / Johan Venter.Venter, Johan January 2012 (has links)
Various commercial software packages are available for simulating compressed air
network operations. However, none of these software packages are able to
dynamically prioritise compressor selection on large compressed air networks in the
mining industry.
In this dissertation, a dynamic compressor selector (DCS) will be developed that will
actively and continuously monitor system demand. The software will ensure that the
most suitable compressors, based on efficiency and position in the compressed air
network, are always in operation. The study will be conducted at a platinum mine.
Compressed air flow and pressure requirements will be maintained without
compromising mine safety procedures. Significant energy savings will be realised.
DCS will receive shaft pressure profiles from each of the shafts’ surface compressed
air control valves. These parameters will be used to calculate and predict the
compressed air demand. All pipe friction losses and leaks will be taken into account
to determine the end-point pressure losses at different flow rates. DCS will then
prioritise the compressors of the compressed air network based on the overall
system requirement.
This software combines the benefits of supply-side and demand-side management.
Potential energy savings with DCS were proven and compressor cycling reduced. A
DCS user-friendly interface was created to easily set up any mine’s compressed air
network. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
|
2 |
Development of a dynamic centrifugal compressor selector for large compressed air networks in the mining industry / Johan Venter.Venter, Johan January 2012 (has links)
Various commercial software packages are available for simulating compressed air
network operations. However, none of these software packages are able to
dynamically prioritise compressor selection on large compressed air networks in the
mining industry.
In this dissertation, a dynamic compressor selector (DCS) will be developed that will
actively and continuously monitor system demand. The software will ensure that the
most suitable compressors, based on efficiency and position in the compressed air
network, are always in operation. The study will be conducted at a platinum mine.
Compressed air flow and pressure requirements will be maintained without
compromising mine safety procedures. Significant energy savings will be realised.
DCS will receive shaft pressure profiles from each of the shafts’ surface compressed
air control valves. These parameters will be used to calculate and predict the
compressed air demand. All pipe friction losses and leaks will be taken into account
to determine the end-point pressure losses at different flow rates. DCS will then
prioritise the compressors of the compressed air network based on the overall
system requirement.
This software combines the benefits of supply-side and demand-side management.
Potential energy savings with DCS were proven and compressor cycling reduced. A
DCS user-friendly interface was created to easily set up any mine’s compressed air
network. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
|
Page generated in 0.1155 seconds