• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The influence of minimum stress on the fatigue life of non strain crystallising elastomers

Abraham, Frank January 2002 (has links)
No description available.
2

Modeling of crack tip high inertia zone in dynamic brittle fracture

Karedla-Ravi, Shankar 17 September 2007 (has links)
A phenomenological cohesive term is proposed and added to an existing cohesive constitutive law (by Roy and Dodds) to model the crack tip high inertia region proposed by Gao. The new term is attributed to fracture mechanisms that result in high energy dissipation around the crack tip and is assumed to be a function of external energy per volume input into the system. Finite element analysis is performed on PMMA with constant velocity boundary conditions and mesh discretization based on the work of Xu and Needleman. The cohesive model with the proposed dissipative term is only applied in the high inertia zone i.e., to cohesive elements very close to the crack tip and the traditional Roy and Dodds model is applied on cohesive elements in the rest of the domain. It was observed that crack propagated in three phases with a speed of 0.35cR before branching, which are in good agreement with experimental observations. Thus, modeling of high inertia zone is one of the key aspects to understanding brittle fracture.
3

ADAPTIVE MULTI-TIME-STEP METHODS FOR DYNAMIC CRACK PROPAGATION

Mriganabh Boruah (11851130) 18 December 2021 (has links)
<p>Problems in structural dynamics that involve rapid evolution of the material at multiple scales of length and time are challenging to solve numerically. One such problem is that of a structure un- dergoing fracture, where the material in the vicinity of a crack front may experience high stresses and strains while the remainder of the structure may be unaffected by it. Usually, such problems are solved using numerical methods based on a finite element discretization in space and a finite difference time-stepping scheme to capture dynamic response. Regions of interest within the struc- ture, where high transients are expected, are usually modeled with a fine discretization in space and time for better accuracy. In other regions of the model where the response does not change rapidly, a coarser discretization suffices and helps keep the computational cost down. This variation in spatial and temporal discretization is achieved through domain decomposition and multi-time-step coupling methods which allow the use of different levels of mesh discretization and time-steps in different regions of the mesh.</p>
4

Aplicação de modelos coesivos intrínsecos na simulação da propagação dinâmica de fraturas. / Application of intrinsic cohesive models for simulation of dynamic crack propagation.

Amorim, José Adeildo de 06 September 2007 (has links)
The phenomena studied in Fracture Mechanics can be observed either in Nature, the most sophisticated systems or ordinary structures. As a consequence, Engineers need to be alert for investigating the variety of complex mechanisms, related with fracture processes, which are capable of appearing in these systems. The possibility of failure is a real premise has to be considered not only in the design of structures, but also throughout their life. Undoubtedly, in this context Fracture Mechanics should be used to carry out prognostics of potential crack propagation patterns, verifying if there exists or not risk of keeping a structure in service usage. An alternative formulation widely applied to simulate fracture behavior is the Cohesive Zone Modeling (CZM) approach. It is a scientific branch of Fracture Mechanics originally proposed by Barenblatt (1959, 1962) and Dugdale (1960), and which after Xu and Needleman s works (1993, 1994) has acquired a great acceptance in scientific community. For this reason, the present work employs Xu and Needleman s model to simulate dynamic crack propagation in brittle materials, introducing the Software for Simulation of Dynamic Cohesive Fracture (DyCOH), which is based on Object-Oriented Programming (OOP) paradigm for facilitating future reuse and extension of implemented code. Using DyCOH software two numerical applications are shown. First, for verification purpose, the classical Xu and Needleman s problem is simulated and the response of DyCOH is compared with literature results. Second, for didactic aspiration, a simpler problem is studied in order to understand the influence of loading speed on fracture patterns of a tie-bar. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os fenômenos estudados pela Mecânica da Fratura podem ser observados na própria Natureza, em sistemas de altíssimo padrão tecnológico, bem como em estruturas mais tradicionais. Dessa forma, os engenheiros devem estar alerta para investigar a variedade de mecanismos complexos, relacionados aos processos de fratura, que podem surgir nesses sistemas. Nesse sentido, a possibilidade de falha precisa ser encarada como uma premissa real a ser observada não somente nas etapas de projeto, mas durante toda vida útil das estruturas. Sem dúvida, para auxiliar nessa tarefa, a Mecânica da Fratura pode ser utilizada através da realização de prognósticos dos potenciais padrões de propagação de trincas, verificando a existência ou não de risco de manter determinada estrutura em serviço. Uma formulação alternativa que vem sendo amplamente empregada para a simulação do comportamento a fratura é a de Modelos de Zona Coesiva. Estes formam um ramo da Mecânica da Fratura originalmente proposto por Barenbllat (1959, 1962) e Dugdale (1960), e que depois dos trabalhos de Xu e Needleman (1993, 1994) tem recebido uma grande aceitação no meio científico. Assim sendo, o presente trabalho emprega o modelo coesivo de Xu e Needleman para simulação da propagação dinâmica de fraturas em matérias frágeis, dando início a construção do DyCOH (Software for Simulation of Dynamic Cohesive Fracture ). Este é concebido com base nos conceitos de programação orientada a objetos, visando facilitar o reuso e a extensibilidade do código base. Através do DyCOH, duas aplicações numéricas são realizadas. Na primeira, o problema clássico de Xu e Needleman é simulado e os resultados obtidos pelo DyCOH são comparados com os disponíveis na literatura técnica, de forma a realizar a verificação numérica do código. No segundo, um problema mais simples é estudado com objetivo de entender a influência da velocidade de aplicação do carregamento no padrão de fraturamento de um tirante, permitindo observar a capacidade do DyCOH em reproduzir um exemplo mais didático.
5

Modélisation de la transition traction-cisaillement des métaux sous choc par la X-FEM / X-FEM simulation of the shear-tensile transition for dynamic crack propagation

Haboussa, David 22 November 2012 (has links)
Dans un contexte de vulnérabilité militaire des sous-marins, les ingénieurs et chercheurs doivent être capables de prédire le comportement des structures fissurées. Ainsi, la modélisation de la transition des changements de modes de propagation de fissure (cisaillement-traction et inversement) des métaux sous sollicitations extrêmes devient un outil incontournable ou essentiel. Des critères tridimensionnels de direction de propagation de fissure développés pour une rupture par cisaillement ou par ouverture sont exposés. Des formules de direction de propagation semi-analytiques et analytiques, fonctions des facteurs d’intensité des contraintes et du coefficient de Poisson, sont ainsi proposées. L’interprétation de ces formules laisse envisager la prise en compte des effets tridimensionnels dans de futures simulations 3D de propagation de fissure. Une étude du problème en deux dimensions est également développée, proposant une formule analytique du critère en cisaillement. De plus un algorithme automatique de transition cisaillement-traction a été implémenté dans le code de calcul de dynamique explicite Europlexus, développé par le CEA. Une méthodologie d’identification des paramètres du modèle pour un matériau donné et pour un cas quasi-statique a été proposée. Confronté à l’interprétation de deux expériences connues de propagation dynamique (expériences de Kalthoff et de Ravichandran), le modèle proposé a montré sa pertinence. De plus, afin de mieux connaître le comportement à rupture de l’acier à Haute Limite Élastique Soudable, deux études expérimentales dédiées au suivi de la propagation dynamique d’un front de fissure ont été développées et validées sur des essais de rupture sous chargement quasi-statique et dynamique de type choc. Cette étude expérimentale a permis d’observer que les branchements de fissures, relevés sur les essais sous chargement quasi-statique, n’apparaissent plus sous chargement dynamique et pour des sollicitations en mode I pur. Les méthodes théoriques et numériques développées dans ces travaux de thèse permettent donc de simuler, automatiquement et avec un unique modèle, les changements de modes de rupture au cours d’une propagation dynamique de fissure. De plus, les protocoles expérimentaux exposés dans ce manuscrit permettent d’appréhender les phénomènes de transition cisaillement-traction en soulevant l’importance de la vitesse de sollicitation et du mode de sollicitation de l’essai. / We propose an approach to the simulation of the shear-tensile transition in dynamic crack growth based on two points: a new crack propagation criterion which is suitable for shear, and an algorithm which is capable of handling the transition from shear mode to tensile mode and back in the same simulation. The new crack propagation criterion for brittle crack growth is based on the maximum shear stress rather than the maximum hoop stress. The shear stress direction becomes the new crack’s direction in which propagation is initiated for shear-type failure. The stress state at the crack’s tip is obtained through a local approach which can be used even in the case of extensive plasticity. Additionally, we propose to control the transition from shear mode to tensile mode during the simulation of crack propagation using an equivalent strain estimated at the crack’s tip. Depending on a threshold strain, the propagation direction is predicted using the maximum shear stress (in the shear case) or the maximum hoop stress (in the tensile case).

Page generated in 0.1314 seconds