Spelling suggestions: "subject:"cynamic track propagation"" "subject:"clynamic track propagation""
1 |
The influence of minimum stress on the fatigue life of non strain crystallising elastomersAbraham, Frank January 2002 (has links)
No description available.
|
2 |
Modeling of crack tip high inertia zone in dynamic brittle fractureKaredla-Ravi, Shankar 17 September 2007 (has links)
A phenomenological cohesive term is proposed and added to an existing
cohesive constitutive law (by Roy and Dodds) to model the crack tip high inertia region
proposed by Gao. The new term is attributed to fracture mechanisms that result in high
energy dissipation around the crack tip and is assumed to be a function of external
energy per volume input into the system. Finite element analysis is performed on
PMMA with constant velocity boundary conditions and mesh discretization based on the
work of Xu and Needleman. The cohesive model with the proposed dissipative term is
only applied in the high inertia zone i.e., to cohesive elements very close to the crack tip
and the traditional Roy and Dodds model is applied on cohesive elements in the rest of
the domain. It was observed that crack propagated in three phases with a speed of 0.35cR
before branching, which are in good agreement with experimental observations. Thus,
modeling of high inertia zone is one of the key aspects to understanding brittle fracture.
|
3 |
ADAPTIVE MULTI-TIME-STEP METHODS FOR DYNAMIC CRACK PROPAGATIONMriganabh Boruah (11851130) 18 December 2021 (has links)
<p>Problems
in structural dynamics that involve rapid
evolution of the material at multiple scales
of length and time are challenging to solve numerically. One such problem
is that of a structure
un- dergoing fracture, where the material in the vicinity of a crack
front may experience high stresses and strains while the remainder of the
structure may be unaffected by it. Usually, such problems are solved using numerical
methods based on a finite element discretization in space and a finite
difference time-stepping scheme
to capture dynamic
response. Regions of interest within
the struc- ture, where high transients are expected, are usually modeled
with a fine discretization in space and time for better accuracy. In other regions
of the model where the response does not change
rapidly, a coarser
discretization suffices and helps keep the computational cost down. This
variation in spatial and temporal
discretization is achieved
through domain decomposition and multi-time-step
coupling methods which allow the use of different levels of mesh discretization
and time-steps in different regions of the mesh.</p>
|
4 |
Aplicação de modelos coesivos intrínsecos na simulação da propagação dinâmica de fraturas. / Application of intrinsic cohesive models for simulation of dynamic crack propagation.Amorim, José Adeildo de 06 September 2007 (has links)
The phenomena studied in Fracture Mechanics can be observed either in Nature,
the most sophisticated systems or ordinary structures. As a consequence, Engineers
need to be alert for investigating the variety of complex mechanisms, related with
fracture processes, which are capable of appearing in these systems. The possibility of
failure is a real premise has to be considered not only in the design of structures, but
also throughout their life. Undoubtedly, in this context Fracture Mechanics should be
used to carry out prognostics of potential crack propagation patterns, verifying if there
exists or not risk of keeping a structure in service usage. An alternative formulation
widely applied to simulate fracture behavior is the Cohesive Zone Modeling (CZM)
approach. It is a scientific branch of Fracture Mechanics originally proposed by
Barenblatt (1959, 1962) and Dugdale (1960), and which after Xu and Needleman s
works (1993, 1994) has acquired a great acceptance in scientific community. For this
reason, the present work employs Xu and Needleman s model to simulate dynamic
crack propagation in brittle materials, introducing the Software for Simulation of
Dynamic Cohesive Fracture (DyCOH), which is based on Object-Oriented
Programming (OOP) paradigm for facilitating future reuse and extension of
implemented code. Using DyCOH software two numerical applications are shown.
First, for verification purpose, the classical Xu and Needleman s problem is simulated
and the response of DyCOH is compared with literature results. Second, for didactic
aspiration, a simpler problem is studied in order to understand the influence of loading
speed on fracture patterns of a tie-bar. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Os fenômenos estudados pela Mecânica da Fratura podem ser observados na
própria Natureza, em sistemas de altíssimo padrão tecnológico, bem como em estruturas
mais tradicionais. Dessa forma, os engenheiros devem estar alerta para investigar a
variedade de mecanismos complexos, relacionados aos processos de fratura, que podem
surgir nesses sistemas. Nesse sentido, a possibilidade de falha precisa ser encarada
como uma premissa real a ser observada não somente nas etapas de projeto, mas durante
toda vida útil das estruturas. Sem dúvida, para auxiliar nessa tarefa, a Mecânica da
Fratura pode ser utilizada através da realização de prognósticos dos potenciais padrões
de propagação de trincas, verificando a existência ou não de risco de manter
determinada estrutura em serviço. Uma formulação alternativa que vem sendo
amplamente empregada para a simulação do comportamento a fratura é a de Modelos de
Zona Coesiva. Estes formam um ramo da Mecânica da Fratura originalmente proposto
por Barenbllat (1959, 1962) e Dugdale (1960), e que depois dos trabalhos de Xu e
Needleman (1993, 1994) tem recebido uma grande aceitação no meio científico. Assim
sendo, o presente trabalho emprega o modelo coesivo de Xu e Needleman para
simulação da propagação dinâmica de fraturas em matérias frágeis, dando início a
construção do DyCOH (Software for Simulation of Dynamic Cohesive Fracture ). Este é
concebido com base nos conceitos de programação orientada a objetos, visando facilitar
o reuso e a extensibilidade do código base. Através do DyCOH, duas aplicações
numéricas são realizadas. Na primeira, o problema clássico de Xu e Needleman é
simulado e os resultados obtidos pelo DyCOH são comparados com os disponíveis na
literatura técnica, de forma a realizar a verificação numérica do código. No segundo, um
problema mais simples é estudado com objetivo de entender a influência da velocidade
de aplicação do carregamento no padrão de fraturamento de um tirante, permitindo
observar a capacidade do DyCOH em reproduzir um exemplo mais didático.
|
5 |
Modélisation de la transition traction-cisaillement des métaux sous choc par la X-FEM / X-FEM simulation of the shear-tensile transition for dynamic crack propagationHaboussa, David 22 November 2012 (has links)
Dans un contexte de vulnérabilité militaire des sous-marins, les ingénieurs et chercheurs doivent être capables de prédire le comportement des structures fissurées. Ainsi, la modélisation de la transition des changements de modes de propagation de fissure (cisaillement-traction et inversement) des métaux sous sollicitations extrêmes devient un outil incontournable ou essentiel. Des critères tridimensionnels de direction de propagation de fissure développés pour une rupture par cisaillement ou par ouverture sont exposés. Des formules de direction de propagation semi-analytiques et analytiques, fonctions des facteurs d’intensité des contraintes et du coefficient de Poisson, sont ainsi proposées. L’interprétation de ces formules laisse envisager la prise en compte des effets tridimensionnels dans de futures simulations 3D de propagation de fissure. Une étude du problème en deux dimensions est également développée, proposant une formule analytique du critère en cisaillement. De plus un algorithme automatique de transition cisaillement-traction a été implémenté dans le code de calcul de dynamique explicite Europlexus, développé par le CEA. Une méthodologie d’identification des paramètres du modèle pour un matériau donné et pour un cas quasi-statique a été proposée. Confronté à l’interprétation de deux expériences connues de propagation dynamique (expériences de Kalthoff et de Ravichandran), le modèle proposé a montré sa pertinence. De plus, afin de mieux connaître le comportement à rupture de l’acier à Haute Limite Élastique Soudable, deux études expérimentales dédiées au suivi de la propagation dynamique d’un front de fissure ont été développées et validées sur des essais de rupture sous chargement quasi-statique et dynamique de type choc. Cette étude expérimentale a permis d’observer que les branchements de fissures, relevés sur les essais sous chargement quasi-statique, n’apparaissent plus sous chargement dynamique et pour des sollicitations en mode I pur. Les méthodes théoriques et numériques développées dans ces travaux de thèse permettent donc de simuler, automatiquement et avec un unique modèle, les changements de modes de rupture au cours d’une propagation dynamique de fissure. De plus, les protocoles expérimentaux exposés dans ce manuscrit permettent d’appréhender les phénomènes de transition cisaillement-traction en soulevant l’importance de la vitesse de sollicitation et du mode de sollicitation de l’essai. / We propose an approach to the simulation of the shear-tensile transition in dynamic crack growth based on two points: a new crack propagation criterion which is suitable for shear, and an algorithm which is capable of handling the transition from shear mode to tensile mode and back in the same simulation. The new crack propagation criterion for brittle crack growth is based on the maximum shear stress rather than the maximum hoop stress. The shear stress direction becomes the new crack’s direction in which propagation is initiated for shear-type failure. The stress state at the crack’s tip is obtained through a local approach which can be used even in the case of extensive plasticity. Additionally, we propose to control the transition from shear mode to tensile mode during the simulation of crack propagation using an equivalent strain estimated at the crack’s tip. Depending on a threshold strain, the propagation direction is predicted using the maximum shear stress (in the shear case) or the maximum hoop stress (in the tensile case).
|
Page generated in 0.1314 seconds