Spelling suggestions: "subject:"cynamic portfolio optimization"" "subject:"clynamic portfolio optimization""
1 |
Deep Learning for Dynamic Portfolio Optimization / Djupinlärning för dynamisk portföljoptimeringMolnö, Victor January 2021 (has links)
This thesis considers a deep learning approach to a dynamic portfolio optimization problem. A proposed deep learning algorithm is tested on a simplified version of the problem with promising results, which suggest continued testing of the algorithm, on a larger scale for the original problem. First the dynamics and objective function of the problem are presented, and the existence of a no-trade-region is explained via the Hamilton-Jacobi-Bellman equation. The no-trade-region dictates the optimal trading strategy. Solving the Hamilton-Jacobi-Bellman equation to find the no-trade-region is not computationally feasible in high dimension with a classic finite difference approach. Therefore a new algorithm to iteratively update and improve an estimation of the no-trade-region is derived. This is a deep learning algorithm that utilizes neural network function approximation. The algorithm is tested on the one-dimensional version of the problem for which the true solution is known. While testing in one dimension only does not assess whether this algorithm scales better than a finite difference approach to higher dimensions, the learnt solution comes fairly close to true solution with a relative score of 0.72, why it is suggested that continued research of this algorithm is performed for the multidimensional version of the problem. / Den här uppsatsen undersöker en djupinlärningsmetod for att lösa ett dynamiskt portföljoptimeringsproblem. En föreslagen djupinlärningsalgoritm testas på en föreklad version av problemet, med lovande resultat. Därför föreslås det vidare att algoritmens prestanda testas i större skala även för det urpsrungliga problemet. Först presenteras dynamiken och målfunktionen för problemet. Det förklaras via Hamilton-Jacobi-Bellman-ekvationen varför det finns en handelsstoppregion. Handelsstoppregionen bestämmer den optimala handelsstrategin. Att lösa Hamilton-Jacobi-Bellman-ekvationen för att hitta handelsstoppregionen är inte beräkningspratiskt möjligt i hög dimension om ett traditionellt tillvägagångssätt med finita differenser används. Därför härleds en ny algoritm som iterativt uppdaterar och förbättrar en skattning av handelsstoppregionen. Det är en djupinlärningsalgoritm som utnyttjar funktionsapproximation med neurala nätverk. Algoritmen testas på den endimensionella verisonen av problemet, för vilken den sanna lösningen är känd. Tester i det endimensionella fallet kan naturligtvis inte ge svar på frågan om den nya algoritmen skalar bättre än en finit differensmetod till högre dimensioner. Men det är i alla fall klart att den inlärda lösningen kommer tämligen nära den sanna med relativ poäng 0.72, och därför föreslås fortsatt forskning kring algoritmen i förhållande till den flerdimensionella versionen av problemet.
|
2 |
Equilibrium Strategies for Time-Inconsistent Stochastic Optimal Control of Asset Allocation / Jämviktsstrategier för tidsinkonsistent stokastisk optimal styrning av tillgångsallokeringDimitry El Baghdady, Johan January 2017 (has links)
We have examinined the problem of constructing efficient strategies for continuous-time dynamic asset allocation. In order to obtain efficient investment strategies; a stochastic optimal control approach was applied to find optimal transaction control. Two mathematical problems are formulized and studied: Model I; a dynamic programming approach that maximizes an isoelastic functional with respect to given underlying portfolio dynamics and Model II; a more sophisticated approach where a time-inconsistent state dependent mean-variance functional is considered. In contrast to the optimal controls for Model I, which are obtained by solving the Hamilton-Jacobi-Bellman (HJB) partial differential equation; the efficient strategies for Model II are constructed by attaining subgame perfect Nash equilibrium controls that satisfy the extended HJB equation, introduced by Björk et al. in [1]. Furthermore; comprehensive execution algorithms where designed with help from the generated results and several simulations are performed. The results reveal that optimality is obtained for Model I by holding a fix portfolio balance throughout the whole investment period and Model II suggests a continuous liquidation of the risky holdings as time evolves. A clear advantage of using Model II is concluded as it is far more efficient and actually takes time-inconsistency into consideration. / Vi har undersökt problemet som uppstår vid konstruktion av effektiva strategier för tidskontinuerlig dynamisk tillgångsallokering. Tillvägagångsättet för konstruktionen av strategierna har baserats på stokastisk optimal styrteori där optimal transaktionsstyrning beräknas. Två matematiska problem formulerades och betraktades: Modell I, en metod där dynamisk programmering används för att maximera en isoelastisk funktional med avseende på given underliggande portföljdynamik. Modell II, en mer sofistikerad metod som tar i beaktning en tidsinkonsistent och tillståndsberoende avvägning mellan förväntad avkastning och varians. Till skillnad från de optimala styrvariablerna för Modell I som satisfierar Hamilton-Jacobi-Bellmans (HJB) partiella differentialekvation, konstrueras de effektiva strategierna för Modell II genom att erhålla subgame perfekt Nashjämvikt. Dessa satisfierar den utökade HJB ekvationen som introduceras av Björk et al. i [1]. Vidare har övergripande exekveringsalgoritmer skapats med hjälp av resultaten och ett flertal simuleringar har producerats. Resultaten avslöjar att optimalitet för Modell I erhålls genom att hålla en fix portföljbalans mellan de riskfria och riskfyllda tillgångarna, genom hela investeringsperioden. Medan för Modell II föreslås en kontinuerlig likvidering av de riskfyllda tillgångarna i takt med, men inte proportionerligt mot, tidens gång. Slutsatsen är att det finns en tydlig fördel med användandet av Modell II eftersom att resultaten påvisar en påtagligt högre grad av effektivitet samt att modellen faktiskt tar hänsyn till tidsinkonsistens.
|
Page generated in 0.1209 seconds