• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of a posterior dynamic stabilisation implant indicated for thoraco-lumbar disc degeneration / Christopher Daniel (Chris) Parker

Parker, Christopher Daniel January 2013 (has links)
Posterior lumbar spinal dynamic stabilisation devices are intended to relieve the pain of spinal segments while prolonging the lifespan of adjacent intervertebral discs. This study focuses on the design of such a device, one that has the correct stiffness to stabilise the spinal segment by the correct amount. An initial literature survey covers contemporary topics related to the lumbar spine. Included topics are lumbar anatomy and kinematics, pathology of degenerative disc disease and treatment thereof, other spinal disorders such as spondylolisthesis and spinal stenosis, as well as the complications associated with lumbar dynamic stabilisation. The influence of factors such as fatigue and wear, as well as the properties of appropriate biomaterials are considered when determining the basis of the device design and development. Stabilising the spinal segment begins with correct material selection and design. Various designs and biomaterials are evaluated for their stiffness values and other user requirements. The simplest design, a U-shaped spring composed of carbon fibre-reinforced poly-ether-ether-ketone (CFR-PEEK) and anchored by polyaxial titanium pedicle screws, satisfies the most critical user requirements. Acceptable stiffness is achieved, fatigue life of the material is excellent and the device is very imaging-friendly. Due to financial constraints, however, a simpler concept that is cheaper and easier to rapid prototype was chosen. This concept involves a construct primarily manufactured from the titanium alloy Ti6Al4V extra-low interstitial (ELI) and cobalt-chrome-molybdenum (CCM) alloys. The first rapid prototype was manufactured using an additive manufacturing process (3D-printing). The development of the device was performed in three main stages: design, verification and validation. The main goal of the design was to achieve an acceptable stiffness to limit the spinal segmental range of motion (ROM) by a determined amount. The device stiffness was verified through simple calculations. The first prototype’s stiffness was validated in force-displacement tests. Further validation, beyond the scope of this study, will include fatigue tests to validate the fatigue life of the production-ready device. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
2

The development of a posterior dynamic stabilisation implant indicated for thoraco-lumbar disc degeneration / Christopher Daniel (Chris) Parker

Parker, Christopher Daniel January 2013 (has links)
Posterior lumbar spinal dynamic stabilisation devices are intended to relieve the pain of spinal segments while prolonging the lifespan of adjacent intervertebral discs. This study focuses on the design of such a device, one that has the correct stiffness to stabilise the spinal segment by the correct amount. An initial literature survey covers contemporary topics related to the lumbar spine. Included topics are lumbar anatomy and kinematics, pathology of degenerative disc disease and treatment thereof, other spinal disorders such as spondylolisthesis and spinal stenosis, as well as the complications associated with lumbar dynamic stabilisation. The influence of factors such as fatigue and wear, as well as the properties of appropriate biomaterials are considered when determining the basis of the device design and development. Stabilising the spinal segment begins with correct material selection and design. Various designs and biomaterials are evaluated for their stiffness values and other user requirements. The simplest design, a U-shaped spring composed of carbon fibre-reinforced poly-ether-ether-ketone (CFR-PEEK) and anchored by polyaxial titanium pedicle screws, satisfies the most critical user requirements. Acceptable stiffness is achieved, fatigue life of the material is excellent and the device is very imaging-friendly. Due to financial constraints, however, a simpler concept that is cheaper and easier to rapid prototype was chosen. This concept involves a construct primarily manufactured from the titanium alloy Ti6Al4V extra-low interstitial (ELI) and cobalt-chrome-molybdenum (CCM) alloys. The first rapid prototype was manufactured using an additive manufacturing process (3D-printing). The development of the device was performed in three main stages: design, verification and validation. The main goal of the design was to achieve an acceptable stiffness to limit the spinal segmental range of motion (ROM) by a determined amount. The device stiffness was verified through simple calculations. The first prototype’s stiffness was validated in force-displacement tests. Further validation, beyond the scope of this study, will include fatigue tests to validate the fatigue life of the production-ready device. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014

Page generated in 0.1151 seconds