• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid

Paluch, Krzysztof J., McCabe, T., Müller-Bunz, B., Corrigan, O.I., Healy, A.M., Tajber, L. 15 August 2013 (has links)
Yes / Multi-ionizable compounds, such as dicarboxylic acids, offer the possibility of forming salts of drugs with multiple stoichiometries. Attempts to crystallize ciprofloxacin, a poorly water-soluble, amphoteric molecule with succinic acid (S) resulted in isolation of ciprofloxacin hemisuccinate (1:1) trihydrate (CHS-I) and ciprofloxacin succinate (2:1) tetrahydrate (CS-I). Anhydrous ciprofloxacin hemisuccinate (CHS-II) and anhydrous ciprofloxacin succinate (CS-II) were also obtained. It was also possible to obtain stoichiometrically equivalent amorphous salt forms, CHS-III and CS-III, by spray drying and milling, respectively, of the drug and acid. Anhydrous CHS and CS had melting points at ∼215 and ∼228 °C, while the glass transition temperatures of CHS-III and CS-III were ∼101 and ∼79 °C, respectively. Dynamic solubility studies revealed the metastable nature of CS-I in aqueous media, resulting in a transformation of CS-I to a mix of CHS-I and ciprofloxacin 1:3.7 hydrate, consistent with the phase diagram. CS-III was observed to dissolve noncongruently leading to high and sustainable drug solution concentrations in water at 25 and 37 °C, with the ciprofloxacin concentration of 58.8 ± 1.18 mg/mL after 1 h of the experiment at 37 °C. This work shows that crystalline salts with multiple stoichiometries and amorphous salts have diverse pharmaceutically relevant properties, including molecular, solid state, and solubility characteristics. / Solid State Pharmaceutical Cluster (SSPC), supported by Science Foundation Ireland under grant number 07/SRC/ B1158.

Page generated in 0.078 seconds