• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 630
  • 349
  • 133
  • 73
  • 22
  • 19
  • 17
  • 17
  • 17
  • 17
  • 13
  • 13
  • 10
  • 7
  • 6
  • Tagged with
  • 1558
  • 1054
  • 274
  • 261
  • 249
  • 243
  • 239
  • 193
  • 153
  • 152
  • 152
  • 134
  • 126
  • 125
  • 119
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Analysis of a dynamical system of animal growth and composition : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Mathematics at Massey University, Albany, New Zealand

Abdul Latif, Nurul Syaza January 2010 (has links)
This thesis investigates the analysis of the extended model of animal growth proposed by Oliviera et al (personal communication, July 2009). This mechanistic model of animal growth based on a detailed representation of energy dynamics focussing on the interaction between four compartment of body composition; nutrient level, fat content, visceral protein and non-visceral protein. The model is mathematically analysed and the behaviour of the model for different feeding level is examined. The animal growth model exhibits thresholds typical of nonlinear systems and multiple stable steady states which have distinct basins of stability which depend on the value of the large number of physiologically-determined parameters. These have not been previously explored theoretically and these are done in this thesis. The model demonstrates richer behaviour where path-following techniques are used to explore the distribution in parameter space of the varying phenomenology.
142

A Non-commutative *-algebra of Borel Functions

Hart, Robert January 2012 (has links)
To the pair (E,c), where E is a countable Borel equivalence relation on a standard Borel space (X,A) and c a normalized Borel T-valued 2-cocycle on E, we associate a sequentially weakly closed Borel *-algebra Br*(E,c), contained in the bounded linear operators on L^2(E). Associated to Br*(E,c) is a natural (Borel) Cartan subalgebra (Definition 6.4.10) L(Bo(X)) isomorphic to the bounded Borel functions on X. Then L(Bo(X)) and its normalizer (the set of the unitaries u in Br*(E,c) such that u*fu in L(Bo(X)), f in L(Bo(X))) countably generates the Borel *-algebra Br*(E,c). In this thesis, we study Br*(E,c) and in particular prove that: i) If E is smooth, then Br*(E,c) is a type I Borel *-algebra (Definition 6.3.10). ii) If E is a hyperfinite, then Br*(E,c) is a Borel AF-algebra (Definition 7.5.1). iii) Generalizing Kumjian's definition, we define a Borel twist G over E and its associated sequentially closed Borel *-algebra Br*(G). iv) Let a Borel Cartan pair (B, Bo) denote a sequentially closed Borel *-algebra B with a Borel Cartan subalgebra Bo, where B is countably Bo-generated. Generalizing Feldman-Moore's result, we prove that any pair (B, Bo) can be realized uniquely as a pair (Br*(E,c), L(Bo(X))). Moreover, we show that the pair (Br*(E,c), L(Bo(X))) is a complete invariant of the countable Borel equivalence relation E. v) We prove a Krieger type theorem, by showing that two aperiodic hyperfinite countable equivalence relations are isomorphic if and only if their associated Borel *-algebras Br*(E1) and Br*(E2) are isomorphic.
143

Natural Smooth Measures on the Leaves of the Unstable Manifold of Open Billiard Dynamical Systems

Richardson, Peter A. (Peter Adolph), 1955- 12 1900 (has links)
In this paper, we prove, for a certain class of open billiard dynamical systems, the existence of a family of smooth probability measures on the leaves of the dynamical system's unstable manifold. These measures describe the conditional asymptotic behavior of forward trajectories of the system. Furthermore, properties of these families are proven which are germane to the PYC programme for these systems. Strong sufficient conditions for the uniqueness of such families are given which depend upon geometric properties of the system's phase space. In particular, these results hold for a fairly nonrestrictive class of triangular configurations of scatterers.
144

Network Specialization: A Topological Mechanism for the Emergence of Cluster Synchronization

Walker, Ethan 04 May 2022 (has links)
Real-world networks are dynamic in that both the state of the network components and the structure of the network (topology) change over time. Most studies regarding network evolution consider either one or the other of these types of network processes. Here we consider the interplay of the two, specifically, we consider how changes in network structure effect the dynamics of the network components. To model the growth of a network we use the specialization model known to produce many of the well-known features observed in real-world networks. We show that specialization results in a nontrivial equitable partition of the network where the elements of the partition form clusters that have synchronous dynamics. In particular, we show that these synchronizing clusters inherit their ability to either locally or globally synchronize from the subnetwork from which they are specialized. Thus, network specialization allows us to model how dynamics and structure can co-evolve in real-world systems.
145

Dynamical Heterogeneity in Granular Fluids and Structural Glasses

Avila, Karina E. 09 June 2014 (has links)
No description available.
146

Complex Dimensions Of 100 Different Sierpinski Carpet Modifications

Leathrum, Gregory Parker 01 December 2023 (has links) (PDF)
We used Dr. M. L. Lapidus's Fractal Zeta Functions to analyze the complex fractal dimensions of 100 different modifications of the Sierpinski Carpet fractal construction. We will showcase the theorems that made calculations easier, as well as Desmos tools that helped in classifying the different fractals and computing their complex dimensions. We will also showcase all 100 of the Sierpinski Carpet modifications and their complex dimensions.
147

Transition to turbulence and mixing in a quasi-two-dimensional Lorentz force-driven Kolmogorov flow

Mitchell, Radford 20 September 2013 (has links)
The research in this thesis was motivated by a desire to understand the mixing properties of quasi-two-dimensional flows whose time-dependence arises naturally as a result of fluid-dynamic instabilities. Additionally, we wished to study how flows such as these transition from the laminar into the turbulent regime. This thesis presents a numerical and theoretical investigation of a particular fluid dynamical system introduced by Kolmogorov. It consists of a thin layer of electrolytic fluid that is driven by the interaction of a steady current with a magnetic field produced by an array of bar magnets. First, we derive a theoretical model for the system by depth-averaging the Navier-Stokes equation, reducing it to a two-dimensional scalar evolution equation for the vertical component of vorticity. A code was then developed in order to both numerically simulate the fluid flow as well as to compute invariant solutions. As the strength of the driving force is increased, we find a number of steady, time-periodic, quasiperiodic, and chaotic flows as the fluid transitions into the turbulent regime. Through long-time advection of a large number of passive tracers, the mixing properties of the various flows that we found were studied. Specifically, the mixing was quantified by computing the relative size of the mixed region as well as the mixing rate. We found the mixing efficiency of the flow to be a non-monotonic function of the driving current and that significant changes in the flow did not always lead to comparable changes in its transport properties. However, some very subtle changes in the flow dramatically altered the degree of mixing. Using the theory of chaos as it applies to Hamiltonian systems, we were able to explain many of our results.
148

Understanding extremes and clustering in chaotic maps and financial returns data

Alokley, Sara Ali January 2015 (has links)
In this thesis we present a numerical and analytical study of modelling extremes in chaotic dynamical systems. We study a range of examples with different dependency structures, and different clustering characteristics. We compare our analysis to the extreme statistics observed for financial returns data, and hence consider the modelling potential of using chaotic systems for understanding financial returns. As part of the study we use the block maxima approach and the peak over threshold method to compute the distribution parameters that arise in the corresponding extreme value distributions. We compare these computations to the theoretical answers, and moreover we obtain error bounds on the rate of convergence of these schemes. In particular we investigate the optimal block size when applying the block maxima method. Since the time series of observations on a dynamical system have dependency we must therefore go beyond the classic approach of studying extremes for independent identically distributed random variables. This is the main purpose of our study. As part of this thesis, we also study clustering in financial returns, and again investigate the potential of using dynamical systems models. Moreover we can also compare numerical quantification of clustering with theoretical approaches. As further work, we measure the dependency structures in our models using a rescaled range analysis. We also make preliminary investigations into record statistics for dynamical systems models, and relate our findings to record statistics in financial data, and to other models (such as random walk models).
149

Polynomial decay of correlations for generalized baker’s transformations via anisotropic Banach spaces methods and operator renewal theory

Chart, Seth William 02 May 2016 (has links)
We apply anisotropic Banach space methods together with operator renewal theory to obtain polynomial rates of decay of correlations for a class of generalized baker's transformations. The polynomial rates were proved for a smaller class of observables in a 2013 paper of Bose and Murray by fundamentally different methods. Our approach provides a direct analysis of the Frobenius-Perron operator associated to a generalized baker's transformation in contrast to the paper of Bose and Murray where decay rates are obtained for a factor map and lifted to the full map. / Graduate
150

Nonlinear dynamics of pattern recognition and optimization

Marsden, Christopher J. January 2012 (has links)
We associate learning in living systems with the shaping of the velocity vector field of a dynamical system in response to external, generally random, stimuli. We consider various approaches to implement a system that is able to adapt the whole vector field, rather than just parts of it - a drawback of the most common current learning systems: artificial neural networks. This leads us to propose the mathematical concept of self-shaping dynamical systems. To begin, there is an empty phase space with no attractors, and thus a zero velocity vector field. Upon receiving the random stimulus, the vector field deforms and eventually becomes smooth and deterministic, despite the random nature of the applied force, while the phase space develops various geometrical objects. We consider the simplest of these - gradient self-shaping systems, whose vector field is the gradient of some energy function, which under certain conditions develops into the multi-dimensional probability density distribution of the input. We explain how self-shaping systems are relevant to artificial neural networks. Firstly, we show that they can potentially perform pattern recognition tasks typically implemented by Hopfield neural networks, but without any supervision and on-line, and without developing spurious minima in the phase space. Secondly, they can reconstruct the probability density distribution of input signals, like probabilistic neural networks, but without the need for new training patterns to have to enter the network as new hardware units. We therefore regard self-shaping systems as a generalisation of the neural network concept, achieved by abandoning the "rigid units - flexible couplings'' paradigm and making the vector field fully flexible and amenable to external force. It is not clear how such systems could be implemented in hardware, and so this new concept presents an engineering challenge. It could also become an alternative paradigm for the modelling of both living and learning systems. Mathematically it is interesting to find how a self shaping system could develop non-trivial objects in the phase space such as periodic orbits or chaotic attractors. We investigate how a delayed vector field could form such objects. We show that this method produces chaos in a class systems which have very simple dynamics in the non-delayed case. We also demonstrate the coexistence of bounded and unbounded solutions dependent on the initial conditions and the value of the delay. Finally, we speculate about how such a method could be used in global optimization.

Page generated in 0.0879 seconds