• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 1
  • Tagged with
  • 160
  • 160
  • 158
  • 88
  • 57
  • 42
  • 40
  • 40
  • 36
  • 35
  • 34
  • 33
  • 29
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Experiment and Simulation of the Acoustic Signature of Fatigued-Cracked Gears in a Two-Stage Gearbox

Ostiguy, Matthew James 01 December 2014 (has links)
This thesis focuses on the development of a health monitoring system for gearbox transmissions. This was accomplished by developing and understanding a two-stage gearbox computer model that emulates an actual gearbox test rig. The computer model contains actual gearbox geometry, flexible shafts, bearings, gear contact forces, input motor torque, output brake torque, and realistic gearbox imbalance. The gear contact force of each gear stage and the input bearing translational acceleration were the main outputs compared between a healthy gearbox and damaged gearbox computer model. The damage of focus was a fatigue crack on the input pinion gear. A sideband energy ratio comparison yielded the computer simulation accurately modeled the difference between a healthy and damaged gearbox. The next step in this study involved the development of a repeatable procedure to initiate and propagate a fatigue crack at the tooth root in an actual spur gear. A damaged spur gear allows for a future comparison of an actual healthy and damaged gearbox system in the lab. A custom fatigue fixture was designed and manufactured for a Martin S1224BS 1 spur gear. The fatigue crack was initiated by position control fatigue testing which deflects the gear tooth a set amplitude for a number of cycles. Over the length of the test, the load that the tooth can withstand in bending decreases as damage begins to occur. Once the max load on the gear has dropped by a significant percentage (5-15%) a crack has initiated and begun to propagate across the tooth face. The use of a scanning electron microscope confirmed the presence a fatigue crack.
132

Design of a Low-Cost Data Acquisition System for Rotordynamic Data Collection

Pellegrino, Gregory S 01 March 2019 (has links)
A data acquisition system (DAQ) was designed based on the use of a STM32 microcontroller. Its purpose is to provide a transparent and low-cost alternative to commercially available DAQs, providing educators a means to teach students about the process through which data are collected as well as the uses of collected data. The DAQ was designed to collect data from rotating machinery spinning at a speed up to 10,000 RPM and send this data to a computer through a USB 2.0 full-speed connection. Multitasking code was written for the DAQ to allow for data to be simultaneously collected and transferred over USB. Additionally, a console application was created to control the DAQ and read data, and MATLAB code written to analyze the data. The DAQ was compared against a custom assembled National Instruments CompactDAQ system. Using a Bentley-Nevada RK 4 Rotor Kit, data was simultaneously collected using both DAQs. Analysis of this data shows the capabilities and limitations of the low cost DAQ compared to the custom CompactDAQ.
133

Environmental Impacts Due to Fixed and Floating Offshore Wind Turbines

Brewer, Micah K 01 January 2012 (has links) (PDF)
As has been the case for onshore wind systems, the environmental effects of offshore wind farms are expected to play an important part of the development of future large-scale wind energy systems. This paper presents a detailed review of the status of, and recent developments in, research on the environmental impacts of fixed and floating offshore wind turbine systems. The primary information that has been reviewed has come from European sources where there are a significant number of offshore installations, but some work on this subject has been carried out recently in the United States. Information, from an extensive review, is presented on the environmental impacts of fixed and floating offshore wind turbines on benthic organisms, fish, marine mammals, avian species and bats. The environmental impacts of fixed and floating systems are anticipated to vary due to multiple parameters that need to be taken into account when identifying environmental impacts. Additionally, there are variations in the impact throughout the lifecycle of the offshore wind turbines. The primary focus for this paper is on the environmental impacts through the scope of barrier and habitat impacts in addition to the anticipated avian and bat fatalities. A noise propagation model is used to determine the extent of effects due to the installation of fixed and floating support structures using piling installation methods. Finally, a summary of progress in all the major environmental impact areas is given along with recommendations for future research.
134

Vibration-Based Health Monitoring of Multiple-Stage Gear Train and Differential Planetary Transmission Involving Teeth Damage and Backlash Nonlinearity

Sommer, Andrew Patrick 01 September 2011 (has links) (PDF)
The objective of this thesis is to develop vibration-based fault detection strategies for on-line condition monitoring of gear transmission systems. The study divides the thesis into three sections. First of all, the local stresses created by a root fatigue crack on a pinion spur gear are analyzed using a quasi-static finite element model and non-linear contact mechanics simulation. Backlash between gear teeth which is essential to provide better lubrication on tooth surfaces and to eliminate interference is included as a defect and a necessary part of transmission design. The second section is dedicated to fixed axis power trains. Torsional vibration is shown to cause teeth separation and double-sided impacts in unloaded and lightly loaded gearing drives. The transient and steady-state dynamic loading on teeth within a two stage crank-slider mechanism arising from backlash and geometric manufacturing errors is investigated by utilizing a non-linear multi-body dynamics software model. The multi-body model drastically reduces the computation time required by finite element methods to simulate realistic operation. The gears are considered rigid with elastic contact surfaces defined by a penalty based non-linear contact formulation. The third section examines a practical differential planetary transmission which combines two inputs and one output. Planetary gears with only backlash errors are compared to those containing both backlash and tooth defects under different kinematic and loading conditions. Fast Fourier Transform (FFT) analysis shows the appearance of side band modulations and harmonics of the gear mesh frequency. A joint time-frequency analysis (JTFA) during start-up reveals the unique vibration patterns for fixed axis gear train and differential planetary gear, respectively, when the contact forces increase during acceleration.
135

A Study on the Vibrational Performance Characteristics of an E22 Isolator After Outgassing and Bake-Out

Melendez, Alma 01 June 2014 (has links) (PDF)
The launch environment experiences many vibration, shock, and acoustic loads. A great concern is the high random vibration levels that can damage components and spacecraft structures, which can cause a mission failure. An effective method of reducing high frequency energy is using isolators. Overall, the need for vibration isolation has been increasing because there has been an increase in the use of mechanisms in which vibrations are prevalent. In addition, there has not been extensive research on the effects of isolators that are outgassed and cured. Therefore, it is important to investigate and understand the vibrational effects on isolators. It is convenient to outgas and cure isolators for the benefit of some components because that eliminates contamination, but outgassing and bake-out could potentially affect the frequency response of the isolator system in a negative way. It is valuable to investigate how much outgassing and bake-out might affect the performance, if any, of the vibration isolator in order to benefit companies who may need that kind of information. The vibration isolators used for the purpose of this research were twenty E22-02-40 isolators provided by Barry Controls, a Hutchinson Group Company. The E22-02-40 isolators were outgassed and cured (heated at high temperatures) in order to be turned from grade C into grade A level for outgassing. Then the vibrational performance of those isolators were tested and compared to the isolators that were not outgassed and not cured. Vibration tests were run in the flat frequency spectrum and high frequency spectrum. The maximum percent difference occurred in the grade A level isolators, in which the first frequency mode increased by 33.3 % in the z direction from the grade C isolators. A numerical finite element analysis was performed on Abaqus/CAE in order to verify the experimental results. In addition, a swelling test was conducted on the isolators to test their physical characteristics change after they were outgassed and cured.
136

Vibration-Based Health Monitoring of Rotating Systems with Gyroscopic Effect

Gavrilovic, Nenad 01 March 2015 (has links) (PDF)
This thesis focuses on the simulation of the gyroscopic effect using the software MSC Adams. A simple shaft-disk system was created and parameter of the sys-tem were changed in order to study the influence of the gyroscopic effect. It was shown that an increasing bearing stiffness reduces the precession motion. Fur-thermore, it was shown that the gyroscopic effect vanishes if the disk of system is placed symmetrically on the shaft, which reduces the system to a Jeffcott-Ro-tor. The second objective of this study was to analyze different defects in a simple fixed axis gear set. In particular, a cracked shaft, a cracked pinion and a chipped pinion as well as a healthy gear system were created and tested in Adams. The contact force between the two gears was monitored and the 2D and 3D frequency spectrum, as well as the Wavelet Transform, were plotted in order to compare the individual defects. It was shown that the Wavelet Transform is a powerful tool, capable of identifying a cracked gear with a non-constant speed. The last part of this study included fault detection with statistical methods as well as with the Sideband Energy Ratio (SER). The time domain signal of the individual faults were used to compare the mean, the standard deviation and the root mean square. Furthermore, the noise profile in the frequency spectrum was tracked with statistical methods using the mean and the standard deviation. It was demonstrated that it is possible to identify a cracked gear, as well as a chipped gear, with statistical methods. However, a cracked shaft could not be identified. The results also show that SER was only capable to identify major defects in a gear system such as a chipped tooth.
137

Model-Based Design of an Optimal Lqg Regulator for a Piezoelectric Actuated Smart Structure Using a High-Precision Laser Interferometry Measurement System

Gallagher, Grant P 01 June 2022 (has links) (PDF)
Smart structure control systems commonly use piezoceramic sensors or accelerometers as vibration measurement devices. These measurement devices often produce noisy and/or low-precision signals, which makes it difficult to measure small-amplitude vibrations. Laser interferometry devices pose as an alternative high-precision position measurement method, capable of nanometer-scale resolution. The aim of this research is to utilize a model-based design approach to develop and implement a real-time Linear Quadratic Gaussian (LQG) regulator for a piezoelectric actuated smart structure using a high-precision laser interferometry measurement system to suppress the excitation of vibratory modes. The analytical model of the smart structure is derived using the extended Hamilton Principle and Euler-Bernoulli beam theory, and the equations of motion for the system are constructed using the assumed-modes method. The analytical model is organized in state-space form, in which the effects of a low-pass filter and sampling of the digital control system are also accounted for. The analytical model is subsequently validated against a finite-element model in Abaqus, a lumped parameter model in Simscape Multibody, and experimental modal analysis using the physical system. A discrete-time proportional-derivative (PD) controller is designed in a heuristic fashion to serve as a baseline performance criterion for the LQG regulator. The Kalman Filter observer and Linear Quadratic Regulator (LQR) components of the LQG regulator are also derived from the state-space model. It is found that the behavior of the analytical model closely matches that of the physical system, and the performance of the LQG regulator exceeds that of the PD controller. The LQG regulator demonstrated quality estimation of the state variables of the system and further constitutes an exceptional closed-loop control system for active vibration control and disturbance rejection of the smart structure.
138

Challenges and signal processing of high strain rate mechanical testing

Lamdini, Barae 13 May 2022 (has links)
Dynamic testing provides valuable insight into the behavior of materials undergoing fast deformation. During Split-Hopkinson Pressure Bar testing, stress waves are measured using strain gauges as voltage variations that are usually very small. Therefore, an amplifier is required to amplify the data and analyze it. One of the few available amplifiers designed for this purpose is provided by Vishay Micro-Measurements which limits the user’s options when it comes to research or industry. Among the challenges of implementing the Hopkinson technology in the industry are the size and cost of the amplifier. In this work, we propose a novel design of a signal conditioning amplifier that provides the following functionalities: voltage excitation for strain gauges, wide gain range (1-1000), signal balancing, shunting, and filtering. The main objective is to make a smaller and cheaper amplifier that provides equivalent or better performance allowing larger application of the Hopkinson technology in the industry.
139

Detecting Structural Defects Using Novel Smart Sensory and Sensor-less Approaches

Baghalian, Amin 17 October 2017 (has links)
Monitoring the mechanical integrity of critical structures is extremely important, as mechanical defects can potentially have adverse impacts on their safe operability throughout their service life. Structural defects can be detected by using active structural health monitoring (SHM) approaches, in which a given structure is excited with harmonic mechanical waves generated by actuators. The response of the structure is then collected using sensor(s) and is analyzed for possible defects, with various active SHM approaches available for analyzing the response of a structure to single- or multi-frequency harmonic excitations. In order to identify the appropriate excitation frequency, however, the majority of such methods require a priori knowledge of the characteristics of the defects under consideration. This makes the whole enterprise of detecting structural defects logically circular, as there is usually limited a priori information about the characteristics and the locations of defects that are yet to be detected. Furthermore, the majority of SHM techniques rely on sensors for response collection, with the very same sensors also prone to structural damage. The Surface Response to Excitation (SuRE) method is a broadband frequency method that has high sensitivity to different types of defects, but it requires a baseline. In this study, initially, theoretical justification was provided for the validity of the SuRE method and it was implemented for detection of internal and external defects in pipes. Then, the Comprehensive Heterodyne Effect Based Inspection (CHEBI) method was developed based on the SuRE method to eliminate the need for any baseline. Unlike traditional approaches, the CHEBI method requires no a priori knowledge of defect characteristics for the selection of the excitation frequency. In addition, the proposed heterodyne effect-based approach constitutes the very first sensor-less smart monitoring technique, in which the emergence of mechanical defect(s) triggers an audible alarm in the structure with the defect. Finally, a novel compact phased array (CPA) method was developed for locating defects using only three transducers. The CPA approach provides an image of most probable defected areas in the structure in three steps. The techniques developed in this study were used to detect and/or locate different types of mechanical damages in structures with various geometries.
140

Development of a Two-Fluid Drag Law for Clustered Particles Using Direct Numerical Simulation and Validation through Experiments

Abbasi Baharanchi, Ahmadreza 13 November 2015 (has links)
This dissertation focused on development and utilization of numerical and experimental approaches to improve the CFD modeling of fluidization flow of cohesive micron size particles. The specific objectives of this research were: (1) Developing a cluster prediction mechanism applicable to Two-Fluid Modeling (TFM) of gas-solid systems (2) Developing more accurate drag models for Two-Fluid Modeling (TFM) of gas-solid fluidization flow with the presence of cohesive interparticle forces (3) using the developed model to explore the improvement of accuracy of TFM in simulation of fluidization flow of cohesive powders (4) Understanding the causes and influential factor which led to improvements and quantification of improvements (5) Gathering data from a fast fluidization flow and use these data for benchmark validations. Simulation results with two developed cluster-aware drag models showed that cluster prediction could effectively influence the results in both the first and second cluster-aware models. It was proven that improvement of accuracy of TFM modeling using three versions of the first hybrid model was significant and the best improvements were obtained by using the smallest values of the switch parameter which led to capturing the smallest chances of cluster prediction. In the case of the second hybrid model, dependence of critical model parameter on only Reynolds number led to the fact that improvement of accuracy was significant only in dense section of the fluidized bed. This finding may suggest that a more sophisticated particle resolved DNS model, which can span wide range of solid volume fraction, can be used in the formulation of the cluster-aware drag model. The results of experiment suing high speed imaging indicated the presence of particle clusters in the fluidization flow of FCC inside the riser of FIU-CFB facility. In addition, pressure data was successfully captured along the fluidization column of the facility and used as benchmark validation data for the second hybrid model developed in the present dissertation. It was shown the second hybrid model could predict the pressure data in the dense section of the fluidization column with better accuracy.

Page generated in 0.0818 seconds