• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 7
  • 1
  • Tagged with
  • 21
  • 21
  • 12
  • 11
  • 9
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation multi-échelle de la déformation plastique de MgO monocristallin : du laboratoire au manteau terrestre / Multi-scale modeling of the plasticity of magnesium oxyde single crystal : from laboratory conditions to the Earth’s mantle

Amodeo, Jonathan 15 December 2011 (has links)
Les évènements géologiques de surface, comme le volcanisme ou les séismes, sont le fruit d'une dynamique qui vise à dissiper la chaleur interne de notre planète. Dans le manteau terrestre, les roches sont déformées plastiquement dans des conditions extrêmes de pression, de température et de vitesse de déformation. Malgré les récentes avancées expérimentales, il est impossible de reproduire de telles conditions de déformation en laboratoire. C'est pourquoi nous proposons, dans ce travail de thèse, une approche numérique, basée sur la modélisation multi-échelle de la plasticité, des conditions du laboratoire à celles qui caractérisent le manteau terrestre. Nous avons choisi d'appliquer cette méthode à MgO, phase importante du manteau inférieur.À partir des propriétés de cœur des dislocations, nous avons utilisé la théorie des double-décrochements afin de décrire la mobilité d'une dislocation isolée en fonction de la température et de la contrainte. Nous avons ensuite implémenté, dans un code de Dynamique des Dislocations (DD), les paramètres de mobilité des différents défauts afin de décrire le comportement collectif des dislocations lors d’essais numériques de déformation. Les résultats montrent que les propriétés mécaniques de MgO dépendent fortement de la pression et de la vitesse de déformation. / Surface geological events, like volcanos and earthquakes, are due to the internal dynamics of the Earth which tends to release its internal heat. Inside the Earth's mantle, solid rocks are plastically strained under extreme conditions of pressure, temperature and strainrate. In spite of recent experimental progress, it is still impossible to reach such conditions of deformation. This is why we propose an alternative approach, based on the multi-scale modeling of plasticity, from the laboratory conditions to the Earth's mantle. We have choosen to apply our model to magnesium oxide which is a phase present in the lower mantle.From core properties, we modeled a dislocation thermally activated mobility law based on the kink pair theory. Then, we have incorporated it inside a Dislocation Dynamics code to describe the collective behaviour of dislocations throughout numerical strain experiments. Here we show that MgO mechanical properties depends significantly on pressure and strainrate.
2

Etude des phénomènes d'auto-organisation des ensembles de dislocations dans un alliage au vieillissement dynamique / Investigation of the phenomena of self-organization of dislocations in a dynamically strain ageing alloy

Bougherira, Youcef 27 September 2011 (has links)
Durant ces dernières années la déformation plastique est de plus en plus souvent étudiée du point de vue de la dynamique des systèmes complexes, caractérisée par l'auto-organisation et impliquant plusieurs échelles. Le présent travail est une étude multi-échelles de la dynamique collective de dislocations dans un alliage AlMg sujetà l'effet Portevin-Le Chatelier (PLC). Pour atteindre cet objectif nous avons réalisé l'enregistrement simultané des courbes de traction, de l'émission acoustique (EA) et du champ de déformations locales, ainsi que la caractérisation quantitative de la complexité grâce aux analyses statistique et multifractale. Le travail de thèse a permis de montrer que la manifestation apparente des processus de déformation plastique dépend de l'échelle d'observation. L'analyse de l'EA a révélé un comportement intrinsèquement intermittent et invariant d'échelles dans toutes les conditions expérimentales. Ces résultats suggèrent qu'aux échelles associées à l'EA, la plasticité peut être gouvernée par une dynamique universelle, qu'elle soit liée à l'instabilité PLC ou à un écoulement macroscopiquement homogène. Malgré le caractère ubiquitaire de cette observation, le champ de déformations locales montre des processus de déformation ondulatoires, et l'analyse statistique des chutes de contrainte révèle des échelles caractéristiques. Une hypothèse de synchronisation des avalanches des dislocations est avancée afin d'expliquer dans certaines conditions expérimentales le passage de l'échelle mésoscopique à l'échelle macroscopique / In recent years, the plastic deformation more and more often studied in terms of the dynamics of complex systems, which is characterized by self-organization and involves various scales. This work presents a multi-scale investigation of the collective behavior of dislocations in an AlMg alloy prone to the Portevin-Le Chatelier (PLC) effect. To achieve this goal we have performed simultaneous recording of tensile curves, acoustic emission (AE), and local strain field, as well as quantitative characterization of the complexity through statistical and multifractal analyses. The results obtained proved that the apparent manifestations of the plastic deformation processes depend on the scale of observation. The analysis of the AE data revealed an inherently intermittent and scale-invariant behavior in all experimental conditions. These results suggest that at the scales pertaining to the AE, the plasticity may be governed by a universal dynamics, be it related to the PLC instability or macroscopically homogeneous flow. Despite the ubiquitous nature of this observation, the local strain field uncovers wave-like deformation processes, and the statistical analysis of stress serrations reveals characteristic scales. Synchronization of dislocation avalanches is conjectured to explain (under some experimental conditions) the transition from the mesoscopic to the macroscopic scale
3

Interaction dislocations - joints de grains en déformation plastique monotone : étude expérimentale et modélisations numériques

Daveau, Gaël 19 September 2012 (has links) (PDF)
Modéliser la déformation plastique des polycristaux est un objectif majeur de la science des matériaux. Tous les modèles actuels comportent une partie phénoménologique n'ecessitant un ajustement de paramètres sur des résultats expérimentaux. Cette thèse vise à mettre en place un nouveau modèle, justifié physiquement, sans paramètre ajustable et adapté à la modélisation du polycristal CFC en sollicitation monotone. Afin de mesurer les champs mécaniques à l'échelle du micromètre, des mesures de microdiffraction Laue ont été réalisées sur un tricristal de cuivre à une faible déformation plastique. Ces mesures nous renseignent sur les mécanismes plastiques intervenant très près des joints de grains et définissent des états de référence pour les simulations. On montre principalement que la déformation plastique s'accompagne d'un stockage de dislocations géométriquement nécessaires (GND) aux joints de grains, en relation avec l'apparition de contraintes internes à longue distance. Des simulations de Dynamique des Dislocations dans des bicristaux ont 'et'e réalisées afin de caractériser les phénomènes physiques mis en œuvre. Ces simulations confirment que l'interaction dislocations - joints de grains s'accompagne d'un stockage de GND sous la forme de microstructures tridimensionnelles très inhomogènes. Les propriétés mécaniques induites par ce phénomène complexe peuvent être quantifiées par des lois continues élaborées à partir de l'approximation théorique d'un empilement unidimensionnel. Les lois de comportement ainsi définies ont ensuite été incorporées dans une modélisation micromécanique de plasticité cristalline, jusqu'ici dédiée au monocristal CFC. Le modèle ainsi construit a maintenant la capacité de prédire les mesures réalisées sur le tricristal de cuivre. Nous avons ainsi mis en place un modèle physiquement justifié et adapté 'a la modélisation du polycristal CFC en sollicitation monotone.
4

Analyse des contraintes internes dans les monocristaux cfc : vers une nouvelle loi de plasticité cristalline

Manole, Ciprian 04 March 2010 (has links) (PDF)
L'étude de la plasticité des monocristaux présente un réel intérêt pour la compréhension de la déformation des métaux pendant leur mise en forme. Parmi les causes possibles de la plasticité des monocristaux CFC, le glissement de dislocations est le mécanisme de déformation prépondérant. L'analyse de leurs mouvements (à l'origine de la déformation), de leur accumulation et de leurs interactions (à l'origine de l'écrouissage) est alors nécessaire si l'on souhaite établir des modélisations macroscopiques du comportement mécanique qui aient un sens physique. Une technique d'analyse pertinente est la simulation par la Dynamique des Dislocations Discrètes (DDD), permettant la simulation de la plasticité directement à l'échelle de la dislocation. Ce code, permet de remplacer les techniques expérimentales comme la Microscopie Electronique en Transmission, en donnant accès à la répartition hétérogène des contraintes qui règnent au sein des microstructures de dislocations et qui conditionnent complètement le comportement mécanique. Dans cette thèse, les analyses réalisées en DDD donnent un réel éclairage sur les variables d'état nécessaires à la caractérisation d'une microstructure de dislocations, et à la description mathématiquement de son état physique. Cela permet d'établir une modélisation riche de la plasticité cristalline, apte à rendre compte d'effets d'écrouissage isotropes et cinématiques complexes. La modélisation proposée est adaptée à simuler une large gamme d'amplitudes de déformations plastiques, allant de la fatigue à grand nombre de cycles (ep = 10-5) jusqu'à la traction monotone (ep >100 %) sans nécessité de recalage de paramètres.
5

Etude expérimentale et simulation numérique des mécanismes de plasticité dans les alliages de zirconium

Lebon, Cyril 16 December 2011 (has links) (PDF)
Ce travail part du constat d'une part qu'il existe très peu de données expérimentales dans la littérature sur les monocristaux de zirconium et d'autre part qu'aucune loi de comportement monocristalline pour ce matériau n'est déterminée. L'objectif est donc de disposer d'une base de données expérimentale conséquente comme les cissions critiques pour le système prismatique, l'écrouissage, l'activation des systèmes de glissement et les volumes d'activation. Après avoir obtenu ces différents paramètres en utilisant la méthode de corrélation d'images, une approche multiéchelle a été mise en œuvre en s'appuyant d'une part sur la dynamique des dislocations et d'autre part sur des calculs par éléments finis. Une première loi de comportement monocristalline pour le zirconium est proposée et des simulations par éléments finis ont validé cette approche innovante.
6

Contribution à l'analyse d'équations aux dérivées partielles <br />décrivant le mouvement de fronts avec applications<br />à la dynamique des dislocations.

Forcadel, Nicolas 02 July 2007 (has links) (PDF)
Ce travail porte sur la modélisation, l'analyse et l'analyse numérique de la dynamique des dislocations ainsi que sur les liens très forts qui existent avec les mouvements de type mouvement par courbure moyenne. Les dislocations sont des défauts linéaires qui se déplacent dans les cristaux lorsque ceux-ci sont soumis à des contraintes extérieures. D'une manière générale, la dynamique d'une ligne de dislocation est décrite par une équation eikonale où la vitesse dépend de manière non locale de l'ensemble de la ligne. Il est également possible d'ajouter un terme de courbure moyenne dans la modélisation. <br /><br />La première partie de ce mémoire est consacrée aux propriétés qualitatives de la dynamique d'une ligne de dislocation (existence, unicité, comportement asymptotique...). Cette étude repose en grande partie sur la théorie des solutions de viscosité. On propose également plusieurs schémas numériques pour cette dynamique et on montre leur convergence ainsi que des estimations d'erreurs entre la solution et son approximation numérique.<br /><br />Dans une seconde partie nous faisons le lien entre la dynamique d'un nombre fini de dislocations et la dynamique de densité de dislocations en montrant des résultats d'homogénéisation. Nous étudions également, de manière théorique et numérique, un modèle pour la dynamique de densité de dislocations.
7

Interaction dislocations - joints de grains en déformation plastique monotone : étude expérimentale et modélisations numériques / Dislocation - grain boundary interaction in monotonic plastic deformation : experimental and numerical modelling studies

Daveau, Gaël 19 September 2012 (has links)
Modéliser la déformation plastique des polycristaux est un objectif majeur de la science des matériaux. Tous les modèles actuels comportent une partie phénoménologique n´ecessitant un ajustement de paramètres sur des résultats expérimentaux. Cette thèse vise à mettre en place un nouveau modèle, justifié physiquement, sans paramètre ajustable et adapté à la modélisation du polycristal CFC en sollicitation monotone. Afin de mesurer les champs mécaniques à l’échelle du micromètre, des mesures de microdiffraction Laue ont été réalisées sur un tricristal de cuivre à une faible déformation plastique. Ces mesures nous renseignent sur les mécanismes plastiques intervenant très près des joints de grains et définissent des états de référence pour les simulations. On montre principalement que la déformation plastique s’accompagne d’un stockage de dislocations géométriquement nécessaires (GND) aux joints de grains, en relation avec l’apparition de contraintes internes à longue distance. Des simulations de Dynamique des Dislocations dans des bicristaux ont ´et´e réalisées afin de caractériser les phénomènes physiques mis en œuvre. Ces simulations confirment que l’interaction dislocations - joints de grains s’accompagne d’un stockage de GND sous la forme de microstructures tridimensionnelles très inhomogènes. Les propriétés mécaniques induites par ce phénomène complexe peuvent être quantifiées par des lois continues élaborées à partir de l’approximation théorique d’un empilement unidimensionnel. Les lois de comportement ainsi définies ont ensuite été incorporées dans une modélisation micromécanique de plasticité cristalline, jusqu’ici dédiée au monocristal CFC. Le modèle ainsi construit a maintenant la capacité de prédire les mesures réalisées sur le tricristal de cuivre. Nous avons ainsi mis en place un modèle physiquement justifié et adapté `a la modélisation du polycristal CFC en sollicitation monotone. / The modeling of strain hardening in polycrystals is a difficult and still standing task. Current existing models are partly phenomenological, as they always consider constitutive parameters adjusted on the experiment. The aim of the present study is to design a physically based model for the basic problem of monotonic deformation in the FCC polycrystal. Laue microdiffraction is used to measure the mechanical fields in the vicinity of grain boundaries in a copper tricrystal compress at 0.2%. These measurements aim to characterize the plastic phenomena involved and to provide experimental data as bench results for the simulations. Evidences of geometrically necessary dislocations (GND) storage close to the grain boundaries are given in relation with the apparition of longrange internal stresses. Dislocations Dynamics simulations are used to study the plastic strain close to a grain boundary in Cu bicrystals. We show that close to the boundaries plastic strain is associated to the storage of heterogeneous GNDs in complex 3D microstructures. The mechanical properties associate to such microstructure can be described with continuous laws based on a theoretical approximation assuming a 1D pile-up. The corresponding constitutive laws are then introduced in a crystal plasticity model initially devoted to FCC single crystal plasticity and solved with Finite Elements simulations. The new model we propose as now the capacity to reproduce or predict the experimental results we first obtained in the Cu tricrystal. In conclusion, a physically justified model is proposed to predict plastic deformation for the FCC polycrystal in monotonic deformation.
8

Investigation of grain size and shape effects on crystal plasticity by dislocation dynamics simulations / Exploration des effets de la taille et de la forme des grains sur la plasticité cristalline par simulations de dynamique des dislocations

Jiang, Maoyuan 04 June 2019 (has links)
Des simulations de dynamique de dislocation (DD) sont utilisées pour l’étude de l'effet Hall-Petch (HP) et des contraintes internes à long-portée induites par les hétérogénéités de déformation dans les matériaux polycristallins.L'effet HP est reproduit avec succès grâce à des simulations de DD réalisées sur de simples agrégats polycristallins périodiques composés de 1 ou de 4 grains. De plus, l'influence de la forme des grains a été explorée en simulant des grains avec différents rapports d'aspect. Une loi généralisée de HP est proposée pour quantifier l'influence de la morphologie du grain en définissant une taille de grain effective. La valeur moyenne de la constante HP $K$ calculée avec différentes orientations cristallines à faible déformation est proche des valeurs expérimentales.Les dislocations stockées pendant la déformation sont principalement localisées à proximité des joints de grain et peuvent être traitées comme une distribution surfacique de dislocations. Nous avons utilisé des simulations DD pour calculer les contraintes associées aux parois de dislocations de différentes hauteurs, longueurs densités et caractères. Dans tous les cas, la contrainte est proportionnelle à la densité surfacique de dislocations géométriquement nécessaires (GNDs) et sa variation est capturée par un ensemble d'équations empiriques simples. Une prévision de contraintes à long-portée dans les grains est réalisée en sommant les contributions des GNDs accumulées de part et d’autre des joints de grains.L'augmentation de la contrainte interne liée au stockage de GNDs est linéaire avec la déformation plastique et est indépendante de la taille des grains. L'effet de taille observé dans les simulations de DD est attribué au seuil de déformation plastique, contrôlé par deux mécanismes concurrents : la contrainte critique de multiplication des sources et la contrainte critique de franchissement de la forêt. En raison de la localisation de la déformation dans les matériaux à gros grains, le modèle d’empilement des dislocations doit être utilisé pour prédire la contrainte critique dans ce cas. En superposant cette propriété aux analyses que nous avons fait à partir de simulations de DD dans le cas d'une déformation homogène, l'effet HP est justifié pour une large gamme de tailles de grains. / Dislocation Dynamics (DD) simulations are used to investigate the Hall-Petch (HP) effect and back stresses induced by grain boundaries (GB) in polycrystalline materials.The HP effect is successfully reproduced with DD simulations in simple periodic polycrystalline aggregates composed of 1 or 4 grains. In addition, the influence of grain shape was explored by simulating grains with different aspect ratios. A generalized HP law is proposed to quantify the influence of the grain morphology by defining an effective grain size. The average value of the HP constant K calculated with different crystal orientations at low strain is close to the experimental values.The dislocations stored during deformation are mainly located at GB and can be dealt with as a surface distribution of Geometrically Necessary Dislocations (GNDs). We used DD simulations to compute the back stresses induced by finite dislocation walls of different height, width, density and character. In all cases, back stresses are found proportional to the surface density and their spatial variations can be captured using a set of simple empirical equations. The back stress calculation inside grains is achieved by adding the contributions of GNDs accumulated at each GB facet.These back stresses are found to increase linearly with plastic strain and are independent of the grain size. The observed size effect in DD simulations is attributed to the threshold of plastic deformation, controlled by two competing mechanisms: the activation of dislocation sources and forest strengthening. Due to strain localization in coarse-grained materials, the pile-up model is used to predict the critical stress. By superposing such property to the analysis we made from DD simulations in the case of homogeneous deformation, the HP effect is justified for a wide range of grain sizes.
9

Fragilisation des aciers de cuve irradiés : analyse numérique des mécanismes de plasticité à l’aide de simulations de dynamique des dislocations / Dose-dependent embrittlement in nuclear reactor pressure vessel steel : dislocation-mediated plasticity mechanisms analyzed by means of 3D dislocation dynamics simulations

Li, Yang 27 September 2019 (has links)
Ce travail est une contribution à l’étude de la dégradation des propriétés mécaniques des matériaux métalliques irradiés, dans le contexte de la production d’énergie nucléaire. Cette thèse porte en particulier sur l’étude du comportement des dislocations dans les matériaux ferritiques irradiés, à l’aide de simulations de dynamique des dislocations (DD).L’évolution de la microstructure des défauts d’irradiation est tout d’abord analysée à l'aide d’un code nodal (code NUMODIS). Le Chapitre 2 traite en particulier de la diffusion et l’interaction de boucles prismatiques, en utilisant la dynamique des dislocations dite «stochastique». Ces calculs reproduisent les forces d’interaction élastiques boucle/boucle et les forces stochastiques associées aux fluctuations thermiques ambiantes. Il est ainsi montré que la réorientation des boucles (tilt) a un fort effet sur leur dynamique, en ce qui concerne notamment le taux d’évolution du confinement élastique boucle/boucle.L'effet du glissement dévié sur l’interaction entre dislocation/boucle est ensuite examiné au Chapitre 3. Cette étude fait appel à une configuration initiale spécifique, associée à un changement du plan de glissement d'une source de dislocation vis. De cette manière, il est montré que le glissement dévié réduit considérablement la résistance des défauts/obstacles. Cet effet confirme le rôle critique du glissement dévié durant la déformation plastique post-irradiation.La déformation plastique post-irradiation est étudiée à l’échelle du grain, au Chapitre 4, à l’aide de simulations DD à base de segments (code TRIDIS). Ces simulations traitent les mécanismes de glissement dévié et de glissement thermiquement activé (vis). Chaque condition d’irradiation simulée peut être caractérisée par un «décalage de la température apparente induite par des défauts d’irradiation» (ΔDIAT). Cette quantité est proportionnelle aux évolutions statistiques de la mobilité effective des dislocations. Le ΔDIAT calculé est pratiquement équivalent au décalage de la température de transition fragile à ductile (ΔDBTT) obtenu expérimentalement, pour une taille et densité de défauts d’irradiation donnée. Cette corrélation ΔDIAT/ΔDBTT peut être interprétée à partir de mécanismes de déformation plastique élémentaires, faisant appel à la théorie des dislocations. / The interplay between radiation-generated defects and dislocation networks leads to a variety of changes in mechanical properties and results in a detrimental effect on the structural reactor component lifetime. The present PhD work focuses on studying elementary and collective dislocation mechanisms in irradiated iron-based materials, by means of dislocation dynamics (DD) simulations.Evolutions of the radiation-induced defect microstructure are studied first. Namely, the 1D diffusion of interacting prismatic loops is analyzed using the stochastic dislocation dynamics approach, accounting for the elastic forces acting between the loops and the stochastic forces associated with ambient thermal fluctuations. It is found that the interplay between stochastic forces and internal degrees of freedom of loops, in particular the loop reorientation, strongly influences the observed loop dynamics, especially the reaction rates resulting in the elastic confinement of loops.The cross-slip effect on the dislocation/loop interactions is then examined using a specific initial configuration associated with the glide plane change of a screw dislocation source, due to a single and well defined cross-slip event. It is shown that cross-slip significantly affects the effective strength of dislocation/defect interactions and therefore, post-irradiation plastic strain spreading.Lastly, post-irradiation plastic strain spreading is investigated at the grain scale using segment-based dislocation dynamics simulations, accounting for the thermally activated (screw) dislocation slip and cross-slip mechanisms. It is shown that each simulated irradiation condition can be characterized by a specific “Defect-Induced Apparent Straining Temperature shift” (ΔDIAT) level, reflecting the statistical evolutions of the effective dislocation mobility. It is found that the calculated ΔDIAT level closely matches the ductile to brittle transition temperature shift (ΔDBTT) associated with the corresponding, experimentally-observed defect size and number density. This ΔDIAT/ΔDBTT correlation can be explained based on plastic strain spreading arguments.
10

Analyse des mécanismes de glissement des dislocations dans l'UO2 à l'aide de la modélisation multi-échelles comparée à l'expérience / Analysis of dislocation gliding mechanisms in UO2 thanks to multi-scale modelling compared to the experience

Portelette, Luc 10 October 2018 (has links)
Dans l'étude des éléments combustibles des réacteurs à eau pressurisée, cette thèse s'inscrit dans la compréhension et la modélisation du comportement viscoplastique du dioxyde d'uranium (UO2) à l'échelle du polycristal. Lors de fonctionnement de type incidentel du réacteur, le combustible subit une forte élévation de la température avec un gradient thermique de la pastille engendrant des déformations viscoplastiques contrôlées par des mouvements de dislocations. D'abord, un modèle de plasticité cristalline a été développé de manière à décrire l’anisotropie viscoplastique du matériau en fonction de la température et de la vitesse de sollicitation. Des simulations par éléments finis (EF) sur monocristaux ont permis d’identifier que les trois modes de glissement généralement observés dans l'UO2 sont importants pour décrire le comportement anisotrope du matériau. Dans un second temps, les coefficients de la matrice d'interactions entre dislocations ont été déterminés spécifiquement pour l’UO2 afin d’améliorer la modélisation des polycristaux. En effet, en calculant par EF les dislocations géométriquement nécessaires, qui sont responsables d’une forte augmentation de la densité de dislocations stockées dans les polycristaux, les interactions entre dislocations permettent de simuler l’effet dé taille de grain et l’écrouissage des pastilles. Finalement, le modèle, adapté pour les polycristaux, a été validé par comparaison avec les essais expérimentaux sur pastille et par comparaison du comportement intra-granulaire simulé avec des mesures EBSD. Grâce à cette dernière comparaison, il est possible de remonter indirectement aux hétérogénéités de déformation dans les grains / This thesis is part of the study of fuel elements of pressurized water reactors and, more specifically, focus on the understanding and modelling of the viscoplastic behavior of uranium dioxide (UO$_2$) at polycrystalline scale. During the incidental operation of the reactor, the fuel undergoes a strong increase of temperature and thermal gradient between the center and the periphery of the pellet leading to viscoplastic strains due to dislocation movement mechanisms. First, a crystal plasticity model was developed in order to describe the viscoplastic anisotropy of the material considering the temperature and the loading rate. Finite element (FE) simulations on single crystals enabled to highlight that the three slip modes generally observed in UO$_2$ are crucial to describe the anisotropic behavior of the material. Secondly, coefficients of the interaction matrix have been identified specifically for UO$_2$ in order to improve the polycrystal modelling. Indeed, by calculating geometrically necessary dislocations (GNDs), which are responsible of the great increase of the stored dislocation density in polycrystals, the interactions between dislocations enable to simulate de grain size sensitivity and hardening of the fuel pellet. Finally, the model adapted for polycrystals, have been validated by comparing FE simulations with pellet compression tests and by comparing the simulated intra-granular behavior with EBSD measurements. Thanks to the latter comparison, it is possible to indirectly compare the strain heterogeneities in the grains

Page generated in 0.1011 seconds