Spelling suggestions: "subject:"dedynamique moléculaire"" "subject:"etdynamique moléculaire""
1 |
Simulations de dynamique moléculaires du complexe collecteur de lumière de type 2 d’une bactérie pourpre dans différents environnements micellaires et membranaire / Molecular Dynamics Simulations of the light-harvesting 2 (LH2) complex of a purple bacterium in micellar and membrane environmentsKarakas, Esra 09 May 2016 (has links)
Les bactéries photosynthétiques pourpres comme Rhodopseudomonas acidophila (strain 10050) disposent pour collecter la lumière d’un appareil photosynthétique constitué de complexes protéiques membranaires avec des pigments spécialisés. Cet appareil photosynthétique comprend deux types de collecteurs de lumière (light harversting ou LH) appelés LH1 et LH2 et d’un centre réactionnel (CR). La lumière est principalement absorbée par des pigments photosynthétiques liés au complexe LH2 et l'énergie d'excitation résultante est ensuite transférée au complexe LH1 et, de là au centre réactionnel où elle est transformée en énergie chimique. Les données de cristallographie ont permis de montrer que le complexe LH2 se compose d'un ensemble de 9 sous-unités parfaitement symétriques constituées de deux petites sous-unités protéiques α et β associées à 1 caroténoïde (rhodopine glucoside) et 3 bactériochlorophylles-a. Des expériences de spectroscopie de fluorescence en fonction du temps effectuées sur des complexes LH2 uniques ont montré que l'intensité et la position de transition électronique du complexe pouvaient fortement fluctuer avec le temps. Ces observations décrivent un « désordre dynamique » en lien avec la fonction biologique du complexe LH2, qui montre une efficacité d’utilisation de l’énergie lumineuse. Même si un grand nombre d’études met en avant l’existence de ce « désordre » pour interpréter les données expérimentales de fluorescence, peu de travaux ont examiné au niveau moléculaire, les fluctuations locales ou globales au sein du complexe LH2 qui gouvernent ce désordre. La description moléculaire du désordre dynamique du complexe LH2 permettra une compréhension plus précise de ces complexes capables d’utiliser l’énergie solaire avec une grande efficacité, et sont donc d’une grande importance pour la mise en place de systèmes de production d’énergie renouvelable.L’objectif de ce projet de thèse est de mieux comprendre l’origine de ce « désordre » à l’échelle atomique en employant des approches de dynamiques moléculaires classiques. Pour ce faire, nous avons modélisé le complexe LH2 dans différents environnements biomimétiques constitués de détergents (dimethyldodecylamine-N-oxide (LDAO) et le beta octyle glucoside (bOG)) et d'une membrane de POPC. Une première partie de ce travail a consisté à développer des modèles originaux pour ces détergents ainsi que les différents composants du complexe, et à examiner l'agrégation des molécules de détergents autour du complexe. Pour valider nos modèles, des expériences de diffraction des rayons X aux petits angles (SAXS) ont été réalisées avec les complexes LH2-LDAO et LH2-βOG. Dans un second temps, nous avons plus spécifiquement étudié les interactions peptide-pigment,pigment-pigment en fonction de l’environnement. Nos résultats ont montré des différences significatives concernant la dynamique du complexe et les interactions pigment-pigment et pigment-protéine en fonction de l'environnement. Enfin, afin de relier les variations des interactions entre les différents composants du complexe décrits dans nos simulations, aux variations d’absorption du complexe LH2 et au désordre dynamique, des calculs ab-initio ont été réalisés à partir de structures atomiques représentatives de nos simulations. / Purple photosynthetic bacteria, such as Rhodopseudomonas acidophila (strain 10050), have a synthetic apparatus which is composed by membrane protein complexes with specialized pigments to harvest the light. This photosynthetic apparatus is composed of 2 types of light harvesting (LH) complex called LH1 and LH2, and a reactional center (RC). The light is mainly absorbed by photosynthetic pigments bounded to LH2 complex and the resulting excitation energy is transferred to LH1 complex, then to RC where it is transformed to chemical energy. The crystallography data allowed to show that the LH2 complex is composed of a perfectly symmetrical 9 sub-unit ensemble, formed by 2 small protein sub-unit α and β associated to 1 carotenoid (rhodopine glucoside) and 3 bacteriochlorophylls-a. The spectroscopy fluorescence experiences carried out as a function of time on unique LH2 complexes shown that the intensity and the position of the electronic transition of complexes can strongly fluctuate with the time. These observations describe a « dynamic disorder » linked with the biological function of the LH2 complex, which reveal the efficiency of the use of light energy. Even if the large number of studies highlight the existence of this « disorder » to interpret experimental data of fluorescence, a few number of studies analyzed at molecular level the local or global fluctuations inside of LH2 complex which govern this disorder. The molecular description of the dynamic disorder of LH2 complex will permit more precise comprehension about the ability to use of solar energy of these complexes with a huge efficiency, and thus, they are very important for setting up the sustainable energy production system.The aim of this project thesis is a better understanding the origin of this « disorder » at atomic scale by using classical molecular dynamics approaches. In order to do this, we modeled the LH2 complex in different biomimetic environments composed of detergents (dimethyldodecylamine-N-oxide (LDAO) and the β octyle glucoside (βOG)) and of POPC membrane. The first part of this study consisted in developing original models for these detergents, as well as for the different components of the LH2 complex, and to analyze the aggregation of detergent molecules around the complex. To validate our models, small angle X-ray scattering (SAXS) experiments have been realized with the LH2-LDAO and LH2-βOG complexes. In the second part, we specifically studied the interactions of peptide-pigment and pigment-pigment depending on the environment. Our results revealed significant differences concerning the dynamic of the complex and the interactions of pigment-pigment and pigment-protein depending on the environment. In the end, in order to relate the variations of interactions between the different components of complex, as described in our simulations, to the variations of absorption of the LH2 complex and to dynamic disorder, ab-initio calculations have been done from the representative atomic structures of our simulations.
|
2 |
Évolution physico-chimique des hydrocarbures aromatiques polycycliques dans les régions de photodissociationMontillaud, Julien 03 November 2011 (has links) (PDF)
Les molécules Polycycliques Aromatiques Hydrogénées (PAH) jouent un rôle majeur dans la physique et la chimie des régions de photo-dissociation (PDR) de notre galaxie. En retour, ces environnements pilotent l'évolution des PAH, principalement via le champ de rayonnement ultraviolet (UV) et il a été proposé que cette évolution soit liée à celle des très petites particules de poussière. Dans ce travail, nous proposons un approfondissement de la compréhension de ces scénarios d'évolution en combinant des études physico-chimiques et astrophysiques de ces espèces dans les PDR. Dans ce travail, je présente ma contribution au développement d'outils de modélisation des PDR afin de les appliquer à l'analyse des données du satellite spatial infrarouge Spitzer et de l'observatoire spatial Herschel. Des contraintes sont ainsi apportées sur la morphologie et l'énergétique de la nébuleuse par réflexion NGC 7023. La nécessité d'intégrer l'évolution des PAH dans les modèles de PDR est soulignée. Par ailleurs, j'ai développé un modèle d'évolution de la charge et du taux d'hydrogé-nation des PAH dans les PDR. Appliqué à trois PAH de tailles différentes, ce modèle montre que la déshydrogénation des espèces contenant jusqu'à 54 atomes de carbone est rapide et conduit à la formation d'agrégats carbonés. La nécessité de nouvelles études pour mieux caractériser la réactivité des PAH neutres vis-à-vis de l'hydrogène, la recombinaison électronique des espèces ionisées, ainsi que la dissociation des espèces surhydrogénées est mise en évidence. La dernière partie présente une étude quantitative des très petits grains carbonés en évaporation (eVSG) observés dans les PDR. Un outil d'analyse de l'émission des PAH et des eVSG dans le domaine de l'infrarouge moyen est présenté et utilisé pour caractériser l'évaporation des eVSG dans plusieurs PDR. En considérant les agrégats de PAH comme modèle de ces eVSG, j'ai calculé leurs propriétés d'évaporation théoriquement à partir de méthodes issues de la physique statistique. Leur utilisation dans un modèle d'évolution astrophysique a permis de montrer que ces édifices ont des propriétés compatibles avec les contraintes observationnelles. Des pistes sont proposées pour simplifier la modélisation de ces espèces en vue de leur intégration dans un modèle de PDR. La mission Herschel, ainsi que l'arrivée des futures missions spatiales JWST et SPICA, et de l'interféromètre ALMA, laissent entrevoir l'arrivée de nombreuses données observationnelles, dont l'analyse nécessitera d'approfondir notre compréhension de la microphysique des PAH.
|
Page generated in 0.0581 seconds