Spelling suggestions: "subject:"dynamisk punktprognos"" "subject:"dynamisk lastprognos""
1 |
Dynamic Graph Representation Learning on Enterprise Live Video Streaming EventsStefanidis, Achilleas January 2020 (has links)
Enterprises use live video streaming as a mean of communication. Streaming high-quality video to thousands of devices in a corporate network is not an easy task; the bandwidth requirements often exceed the network capacity. For that matter, Peer-To-Peer (P2P) networks have been proven beneficial, as peers can exchange content efficiently by utilizing the topology of the corporate network. However, such networks are dynamic and their topology might not always be known. In this project we propose ABD, a new dynamic graph representation learning approach, which aims to estimate the bandwidth capacity between peers in a corporate network. The architecture of ABDis adapted to the properties of corporate networks. The model is composed of an attention mechanism and a decoder. The attention mechanism produces node embeddings, while the decoder converts those embeddings into bandwidth predictions. The model aims to capture both the dynamicity and the structure of the dynamic network, using an advanced training process. The performance of ABD is tested with two dynamic graphs which were produced by real corporate networks. Our results show that ABD achieves better results when compared to existing state-of-the-art dynamic graph representation learning models. / Företag använder live video streaming för både intern och extern kommunikation. Strömmning av hög kvalitet video till tusentals tittare i ett företagsnätverk är inte enkelt eftersom bandbreddskraven ofta överstiger kapaciteten på nätverket. För att minska lasten på nätverket har Peer-to-Peer (P2P) nätverk visat sig vara en lösning. Här anpassar sig P2P nätverket efter företagsnätverkets struktur och kan därigenom utbyta video data på ett effektivt sätt. Anpassning till ett företagsnätverk är ett utmanande problem eftersom dom är dynamiska med förändring över tid och kännedom över topologin är inte alltid tillgänglig. I det här projektet föreslår vi en ny lösning, ABD, en dynamisk approach baserat på inlärning av grafrepresentationer. Vi försöker estimera den bandbreddskapacitet som finns mellan två peers eller tittare. Architekturen av ABD anpassar sig till egenskaperna av företagsnätverket. Själva modellen bakom ABD använder en koncentrationsmekanism och en avkodare. Attention mekanismen producerar node embeddings, medan avkodaren konverterar embeddings till estimeringar av bandbredden. Modellen fångar upp dynamiken och strukturen av nätverket med hjälp av en avancerad träningsprocess. Effektiviteten av ABD är testad på två dynamiska nätverksgrafer baserat på data från riktiga företagsnätverk. Enligt våra experiment har ABD bättre resultat när man jämför med andra state-of the-art modeller för inlärning av dynamisk grafrepresentation.
|
Page generated in 0.0492 seconds