Spelling suggestions: "subject:"dynamiska data"" "subject:"avdynamiska data""
1 |
Adapting a data-driven battery ageing model to make remaining-useful-life estimations using dynamic vehicle data / Anpassning av datadriven batteriåldringsmodell för uppskattningar av återstående livslängd från dynamiska fordonsdataPhatarphod, Viraj January 2021 (has links)
Transportsektorn är en av världens största producenter av växthusgas därav är dess avkarbonisering essentiell för att uppnå Parisavtalets mål för CO2-emissioner. Ett viktigt steg för att uppnå dessa mål utförs genom elektrifiering. Litium-jon-batterier (eng. litium-ion batteries, ’LIB’) har blivit väldigt populära energilagringssystem för batteridrivna elektriska fordon (eng. battery electric vehicles, ’BEV’) men tenderar att åldras, precis som alla andra batterier. Därav krävs forskning kring batteriföråldring på grund av nedbrytningsprocessernas inverkan på prissättningen, prestationerna och miljöpåverkan av BEV. Olika modeller används för att beskriva batteriernas åldrande. Datadrivna modeller som förutspår batteriers livstid ökar i popularitet vars noggrannhet och prestationer till stor del beror på indatats kvalitet. Formatet för tidsinhämtade data kräver enorma mängder lagringsutrymme, hög processkapacitet och längre processer; något ’reducerad’ eller ’aggregerad’ data delvis åtgärdar. Denna avhandling fokuserar på att utveckla en metodik för användning av dynamiska fordonsdata i ’aggregerad’ form. Tidsloggade data inhämtade från kallklimatstesting av Scanias BEV-prototyp användes varav interaktionseffekterna mellan diverse fordonsparametrar samt deras effekt på batteriåldring utifrån en batteriåldringsmodell analyserades. Olika tillvägagångssätt för strukturering av dynamiska fordonsdata i modellen undersöktes också. Tolv aggregeringsscenarion designades och testades. Dessutom valdes tre scenarion för uppskattningar och jämförelser av återstående användbar livslängd (eng. remaining-useful-life, ’RUL’) tillsammans med resultat från tidsinhämtade data. Slutligen drogs slutsatser om: parameterinteraktioner, struktur av dynamiska fordonsdata och RUL. Flera framtida utvecklingsområden har också föreslagits bland annat: tester av andra aggregeringstekniker, utöka modellen till tjänstefordon samt kategorisera användningsbeteenden av fordon för att förbättra RUL-uppskattningar. / The transport sector is one of the world’s largest greenhouse gas producing sector and it’s decarbonisation is imperative to achieve the CO2 emission targets set by the Paris Agreement. One important step towards achieving these targets is through electrification of the sector. Lithium-ion batteries (LIBs) have become very popular energy storage systems for battery electric vehicles (BEVs). However, LIBs like all other batteries, tend to age. Hence, the study of the battery ageing phenomena is very essential since the degradation in battery characteristics hugely determines the cost, performance and the environmental impact of BEVs. Different modelling approaches are used to represent battery ageing behaviour. Data-driven models for predicting the lifetime of batteries are becoming popular. However, the accuracy and performance of data-driven models largely depends upon the quality of data being used as the input. Time-sampled format of logging data results in huge data files requiring enormous amounts of storage space, high processing power requirements and longer processing times. Instead, using data in a ’reduced’ or ‘aggregated’ form can help in addressing these issues. This thesis work focuses on developing a methodology for using dynamic vehicle data in an ‘aggregated’ form. Time-sampled data from a Scania prototype BEV truck, recorded during cold climate test, was used. The interaction effects between various vehicle parameters and their effect on battery ageing in a battery ageing model were analyzed. Different approaches to structuring dynamic vehicle data for use in the model were also studied. Twelve aggregation scenarios were designed and tested. Furthermore, three scenarios were selected for making remaining-useful-life (RUL) estimations and compared alongside time-sampled data results. Finally, conclusions about parameter interactions, structuring of dynamic vehicle data and RUL estimations were drawn. Several next steps for future work have also been suggested such as testing other aggregation techniques, extending the model to vehicle fleets and categorizing vehicle usage behaviours to make better RUL estimations.
|
Page generated in 0.0619 seconds