• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Information and Default Risk in Financial Valuation

Leniec, Marta January 2016 (has links)
This thesis consists of an introduction and five articles in the field of financial mathematics. The main topics of the papers comprise credit risk modelling, optimal stopping theory, and Dynkin games. An underlying theme in all of the articles is valuation of various financial instruments. Namely, Paper I deals with valuation of a game version of a perpetual American option where the parties disagree about the distributional properties of the underlying process, Papers II and III investigate pricing of default-sensitive contingent claims, Paper IV treats CVA (credit value adjustment) modelling for a portfolio consisting of American options, and Paper V studies a problem motivated by model calibration in pricing of corporate bonds. In each of the articles, we deal with an underlying stochastic process that is continuous in time and defined on some probability space. Namely, Papers I-IV treat stochastic processes with continuous paths, whereas Paper V assumes that the underlying process is a jump-diffusion with finite jump intensity. The information level in Paper I is the filtration generated by the stock value. In articles III and IV, we consider investors whose information flow is designed as a progressive enlargement with default time of the filtration generated by the stock price, whereas in Paper II the information flow is an initial enlargement. Paper V assumes that the default is a hitting time of the firm's value and thus the underlying filtration is the one generated by the process modelling this value. Moreover, in all of the papers the risk-free bonds are assumed for simplicity to have deterministic prices so that the focus is on the uncertainty coming from the stock price and default risk.
2

Pricing of Game Options in a market with stochastic interest rates

Hernandez Urena, Luis Gustavo 30 March 2005 (has links)
An in depth study of the pricing of Game contingent claims under a general diffusion market model, in which interest rate is non constant, is presented. With the idea of providing a few numerical examples of the valuation of such claims, we present a detailed description of a Bootstrapping procedure to obtain interest rate information from Swaps rates. We also present a Stripping procedure that can be used to obtain initial spot (caplet) volatility from Market quotes on Caps/FLoors. These methods are of general application and could be used in the calibration of diffusion models of interest rate. Then we show several examples of calibration of the Hull--White model of interest rates. Our calibration examples are later used in the numerical approximation of the value of a particular form of Game option.
3

Game contingent claims

Eliasson, Daniel January 2012 (has links)
Abstract Game contingent claims (GCCs), as introduced by Kifer (2000), are a generalization of American contingent claims where the writer has the opportunity to terminate the contract, and must then pay the intrinsic option value plus a penalty. In complete markets, GCCs are priced using no-arbitrage arguments as the value of a zero-sum stochastic game of the type described in Dynkin (1969). In incomplete markets, the neutral pricing approach of Kallsen and Kühn (2004) can be used. In Part I of this thesis, we introduce GCCs and their pricing, and also cover some basics of mathematical finance. In Part II, we present a new algorithm for valuing game contingent claims. This algorithm generalises the least-squares Monte-Carlo method for pricing American options of Longstaff and Schwartz (2001). Convergence proofs are obtained, and the algorithm is tested against certain GCCs. A more efficient algorithm is derived from the first one using the computational complexity analysis technique of Chen and Shen (2003). The algorithms were found to give good results with reasonable time requirements. Reference implementations of both algorithms are available for download from the author’s Github page https://github.com/del/ Game-option-valuation-library
4

Quelques résultats sur les équations rétrogrades et équations aux dérivées partielles stochastiques avec singularités. / Some results on backward equations and stochastic partial differential equations with singularities

Piozin, Lambert 23 June 2015 (has links)
Cette thèse est consacrée à l'étude de quelques problèmes dans le domaine des équations différentielles stochastiques rétrogrades (EDSR), et leurs applications aux équations aux dérivées partielles.Dans le premier chapitre, nous introduisons la notion d'équation différentielle doublement stochastique rétrograde (EDDSR) avec condition terminale singulière. Nous étudions d’abord les EDDSR avec générateur monotone, et obtenons ensuite un résultat d'existence par un schéma d'approximation. Une dernière section établit le lien avec les équations aux dérivées partielles stochastiques, via l'approche solution faible développée par Bally, Matoussi en 2001.Le deuxième chapitre est consacré aux EDSR avec condition terminale singulière et sauts. Comme dans le chapitre précédent la partie délicate sera de prouver la continuité en T. Nous formulons des conditions suffisantes sur les sauts afin d'obtenir cette dernière. Une section établit ensuite le lien entre solution minimale de l'EDSR et équations intégro-différentielles. Enfin le dernier chapitre est dédié aux équations différentielles stochastiques rétrogrades du second ordre (2EDSR) doublement réfléchies. Nous avons établi l'existence et l'unicité de telles équations. Ainsi, il nous a fallu dans un premier temps nous concentrer sur le problème de réflexion par barrière supérieure des 2EDSR. Nous avons ensuite combiné ces résultats à ceux existants afin de donner un cadre correct aux 2EDSRDR. L'unicité est conséquence d'une propriété de représentation et l'existence est obtenue en utilisant les espaces shiftés, et les distributions de probabilité conditionnelles régulières. Enfin une application aux jeux de Dynkin et aux options Israëliennes est traitée dans la dernière section. / This thesis is devoted to the study of some problems in the field of backward stochastic differential equations (BSDE), and their applications to partial differential equations.In the first chapter, we introduce the notion of backward doubly stochastic differential equations (BDSDE) with singular terminal condition. A first work consists to study the case of BDSDE with monotone generator. We then obtain existing result by an approximating scheme built considering a truncation of the terminal condition. The last part of this chapter aim to establish the link with stochastic partial differential equations, using a weak solution approach developed by Bally, Matoussi in 2001.The second chapter is devoted to the BSDEs with singular terminal conditions and jumps. As in the previous chapter the tricky part will be to prove continuity in T. We formulate sufficient conditions on the jumps in order to obtain it. A section is then dedicated to establish a link between a minimal solution of our BSDE and partial integro-differential equations.The last chapter is dedicated to doubly reflected second order backward stochastic differential equations (2DRBSDE). We have been looking to establish existence and uniqueness for such equations. In order to obtain this, we had to focus first on the upper reflection problem for 2BSDEs. We combined then these results to those already existing to give a well-posedness context to 2DRBSDE. Uniqueness is established as a straight consequence of a representation property. Existence is obtained using shifted spaces, and regular conditional probability distributions. A last part is then consecrated to the link with some Dynkin games and Israeli options.

Page generated in 0.0536 seconds