Spelling suggestions: "subject:"E/anumber"" "subject:"E/a.number""
1 |
An Equivariant Main Conjecture in Iwasawa Theory and the Coates-Sinnott ConjectureTaleb, Reza 10 1900 (has links)
<p>The classical Main Conjecture (MC) in Iwasawa Theory relates values of p-adic L-function associated to 1-dimensional Artin characters over a totally real number field F to values of characteristic polynomials attached to certain Iwasawa modules. Wiles [47] proved the MC for odd primes p over arbitrary totally real base fields F and for the prime 2 over abelian totally real fields F.</p> <p>An equivariant version of the MC, which combines the information for all characters of the Galois group of a relative abelian extension E/F of number fields with F totally real, was formulated and proven for odd primes p by Ritter and Weiss in [33] under the assumption that the corresponding Iwasawa module is finitely generated over ℤ<sub>p</sub> ("µ=0"). This assumption is satisfied for abelian fields and conjectured to be true in general.</p> <p>In this thesis we formulate an Equivariant Main Conjecture (EMC) for all prime numbers p, which coincides with the version of Ritter and Weiss for odd p, and we provide a unified proof of the EMC for all primes p under the assumptions µ=0 and the validity of the 2-adic MC. The proof combines the approach of Ritter and Weiss with ideas and techniques used recently by Greither and Popescu [13] to give a proof of a slightly different formulation of an EMC under the same assumptions (p odd and µ=0) as in [33].</p> <p>As an application of the EMC we prove the Coates-Sinnott Conjecture, again assuming µ=0. We also show that the p-adic version of the Coates-Sinnott Conjecture holds without the assumption µ=0 for abelian Galois extensions E/F of degree prime to p. These generalize previous results for odd primes due to Nguyen Quang Do in [27], Greither-Popescu [13], and Popescu in [30].</p> / Doctor of Philosophy (PhD)
|
2 |
A fundamental inequality in additive number theory and some related numerical functions /Daily, Mary Lou. January 1972 (has links)
Thesis (Ph. D.)--Oregon State University, 1972. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.
|
3 |
The Hull Numbers of Orientations of GraphsHung, Jung-Ting 23 June 2006 (has links)
For every pair of vertices $u,v$ in an oriented graph, a $u$-$v$
$geodesic$ is a shortest directed path from $u$ to $v$. For an
oriented graph $D$, let $I_{D}[u,v]$ denoted the set of all
vertices lying on a $u$-$v$ geodesic or a $v$-$u$ geodesic. And
for $Ssubseteq V(D)$, let $I_{D}[S]$ denoted the union of all
$I_{D}[u,v]$ for all $u,vin S$. If $S$ is a $convex$ set then
$I_{D}[S]=S$. Let $[S]_{D}$ denoted the smallest convex set
containing $S$. The $geodetic$ $number$ $g(D)$ of an oriented
graph $D$ is the minimum cardinality of a set $S$ with
$I_{D}[S]=V(D)$. The $hull$ $number$ $h(D)$ of an oriented graph
$D$ is the minimum cardinality of a set $S$ with $[S]_{D}=V(D)$.
For a connected graph $G$, let $g^{-}(G)=$min${g(D)$:$D$ is an
orientation of $G$ $}$ and $g^{+}(G)=$max${g(D)$:$D$ is an
orientation of $G$ $}$. And let $h^{-}(G)=$min${h(D)$:$D$ is an
orientation of $G$ $}$ and $h^{+}(G)=$max${h(D)$:$D$ is an
orientation of $G$ $}$. We show that $h^{+}(G)>h^{-}(G)$ and
$g^{+}(G)>g^{-}(G)$ for every connected graph $G$ with
$|V(G)|geq 3$. Then we show that $h^{+}(G)=h^{-}(G)+1$ if and
only if $G$ is isomorphic to $K_{3}$ or $K_{1,r}$ for $rgeq 2$
and prove that for every connected graph $G$, $h^{+}(G)geq 5$ if
and only if $|V(G)|geq 5$ and $G
cong C_{5}$. Let
$Sh^{*}(G)={h(D)$:$D$ is a strongly connected orientation of $G$
$}$ and we have $Sh^{*}(K_{n})={2}$. Let a graph $C(n,t)$ with
$V(C(n,t))={1,2,...,n,x,y}$ and
$E(C(n,t))={i(i+1):i=1,2,...,n-1}cup {1n}cup {1x}cup
{ty}$. We also have $h^{-} (C(n,t))<g^{-}(C(n,t))<h^{+}(C(n,t))
=g^{+}(C(n,t))$ if $n geq 5$, $t
eq frac{n}{2}$ and $3leq
tleq n-1$. The last result answers a problem of Farrugia in [7].
|
4 |
Zwei Beiträge zur ZahlentheorieHammerstein, Adolf, January 1919 (has links)
Thesis (doctoral)--Georg-August-Universität zu Göttingen, 1919. / Vita.
|
5 |
Arithmetische Untersuchungen über Discriminanten und ihre ausserwesentlichen TheilerHensel, Kurt, January 1884 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1884. / Vita. Includes bibliographical references.
|
6 |
Neuer Beweis der Gleichung [Summe] k=1 [unendlich] [mu](k)/k=0Landau, Edmund, January 1899 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1899. / On t.p. "[Summe]" appears as the summation symbol, "k=1" appears under the summation symbol, and "[unendlich]" appears as the infinity symbol above the summation. Vita. Includes bibliographical references.
|
7 |
Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächstPiltz, Adolf, January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1881. / Vita. Includes bibliographical references.
|
8 |
Ueber Zahlkörper, die aus dem Körper der rationalen Zahlen durch Adjunktion von Wurzelausdrücken hervorgehenPrölss, Dora, January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1922. / Vita. Includes bibliographical references.
|
9 |
Verdelingsproblemen bij gegeneraliseerde duale breukenSanders, Johannes Marinus. January 1950 (has links)
Academisch proefschrift--Amsterdam. / At head of title: Vrije Universiteit Amsterdam. Summary in English. "Stellingen": [4] p. inserted.
|
10 |
Analytical investigations in Waring's theorem ...James, Ralph Duncan, January 1934 (has links)
Thesis (Ph. D.)--University of Chicago, 1932. / Vita. Lithoprinted. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois."
|
Page generated in 0.0446 seconds