• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 280
  • 76
  • 34
  • 28
  • 24
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 596
  • 596
  • 224
  • 98
  • 78
  • 75
  • 72
  • 54
  • 53
  • 51
  • 51
  • 49
  • 46
  • 43
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

An Equivariant Main Conjecture in Iwasawa Theory and the Coates-Sinnott Conjecture

Taleb, Reza 10 1900 (has links)
<p>The classical Main Conjecture (MC) in Iwasawa Theory relates values of p-adic L-function associated to 1-dimensional Artin characters over a totally real number field F to values of characteristic polynomials attached to certain Iwasawa modules. Wiles [47] proved the MC for odd primes p over arbitrary totally real base fields F and for the prime 2 over abelian totally real fields F.</p> <p>An equivariant version of the MC, which combines the information for all characters of the Galois group of a relative abelian extension E/F of number fields with F totally real, was formulated and proven for odd primes p by Ritter and Weiss in [33] under the assumption that the corresponding Iwasawa module is finitely generated over ℤ<sub>p</sub> ("µ=0"). This assumption is satisfied for abelian fields and conjectured to be true in general.</p> <p>In this thesis we formulate an Equivariant Main Conjecture (EMC) for all prime numbers p, which coincides with the version of Ritter and Weiss for odd p, and we provide a unified proof of the EMC for all primes p under the assumptions µ=0 and the validity of the 2-adic MC. The proof combines the approach of Ritter and Weiss with ideas and techniques used recently by Greither and Popescu [13] to give a proof of a slightly different formulation of an EMC under the same assumptions (p odd and µ=0) as in [33].</p> <p>As an application of the EMC we prove the Coates-Sinnott Conjecture, again assuming µ=0. We also show that the p-adic version of the Coates-Sinnott Conjecture holds without the assumption µ=0 for abelian Galois extensions E/F of degree prime to p. These generalize previous results for odd primes due to Nguyen Quang Do in [27], Greither-Popescu [13], and Popescu in [30].</p> / Doctor of Philosophy (PhD)

A fundamental inequality in additive number theory and some related numerical functions /

Daily, Mary Lou. January 1972 (has links)
Thesis (Ph. D.)--Oregon State University, 1972. / Typescript (photocopy). Includes bibliographical references. Also available on the World Wide Web.

Zwei Beiträge zur Zahlentheorie

Hammerstein, Adolf, January 1919 (has links)
Thesis (doctoral)--Georg-August-Universität zu Göttingen, 1919. / Vita.

Arithmetische Untersuchungen über Discriminanten und ihre ausserwesentlichen Theiler

Hensel, Kurt, January 1884 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1884. / Vita. Includes bibliographical references.

Neuer Beweis der Gleichung [Summe] k=1 [unendlich] [mu](k)/k=0

Landau, Edmund, January 1899 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1899. / On t.p. "[Summe]" appears as the summation symbol, "k=1" appears under the summation symbol, and "[unendlich]" appears as the infinity symbol above the summation. Vita. Includes bibliographical references.

Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst

Piltz, Adolf, January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1881. / Vita. Includes bibliographical references.

Ueber Zahlkörper, die aus dem Körper der rationalen Zahlen durch Adjunktion von Wurzelausdrücken hervorgehen

Prölss, Dora, January 1900 (has links)
Thesis (doctoral)--Friedrich-Wilhelms-Universität zu Berlin, 1922. / Vita. Includes bibliographical references.

Verdelingsproblemen bij gegeneraliseerde duale breuken

Sanders, Johannes Marinus. January 1950 (has links)
Academisch proefschrift--Amsterdam. / At head of title: Vrije Universiteit Amsterdam. Summary in English. "Stellingen": [4] p. inserted.

Analytical investigations in Waring's theorem ...

James, Ralph Duncan, January 1934 (has links)
Thesis (Ph. D.)--University of Chicago, 1932. / Vita. Lithoprinted. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois."

Concerning Waring's problem for sixth powers

Shook, Robert Clarence, January 1934 (has links)
Thesis (Ph. D.)--University of Chicago, 1934. / Vita. Lithoprinted. "Private edition, distributed by the University of Chicago libraries, Chicago, Illinois."

Page generated in 0.038 seconds