Spelling suggestions: "subject:"eficiência energética"" "subject:"eficiência energéticas""
1 |
Um estudo de caso na recomendação de ações de eficiência energética para residências.RIBEIRO, Iara Pereira. 24 May 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-05-24T13:28:45Z
No. of bitstreams: 1
IARA PEREIRA RIBEIRO - DISSERTAÇÃO (PPGCC) 2016.pdf: 3942904 bytes, checksum: 107850ca0aaa80f6bdae5254492eed99 (MD5) / Made available in DSpace on 2018-05-24T13:28:45Z (GMT). No. of bitstreams: 1
IARA PEREIRA RIBEIRO - DISSERTAÇÃO (PPGCC) 2016.pdf: 3942904 bytes, checksum: 107850ca0aaa80f6bdae5254492eed99 (MD5)
Previous issue date: 2016 / Capes / O aumento da demanda por recursos nos últimos anos e a provável escassez destes em um futuro próximo vem gerando um novo tipo de preocupação na sociedade de como utilizar estes recursos de forma mais eficiente. Um dos recursos onde essa preocupação se tornou mais evidente é o consumo elétrico devido ao uso de fontes não renováveis para a geração de energia elétrica, como por exemplo, as termoelétricas que utilizam o carvão mineral. No Brasil onde a maioria da demanda energética é suprida através de fontes renováveis, atualmente 73.1% da energia é gerada a partir de fontes renováveis, outros fatores como mudanças climáticas e períodos de estiagem podem alterar no total de energia gerado tornando necessário o uso de formas alternativas para geração de energia e consequentemente tornando mais caro o preço final para o consumidor. Surge então a necessidade nesse contexto de desenvolver ferramentas e opções que ajudem a tornar o consumo mais eficiente e a reduzir a produção de energia elétrica de forma a beneficiar tanto as concessionárias como os consumidores finais. Uma opção para solucionar esse problema seria tornar o consumo residencial mais eficiente, dado que no Brasil o consumo residencial é o terceiro maior. Este trabalho propõe uma solução que utiliza mapeamento entre conceitos de sistemas de recomendação e conceitos de eficiência energética para promover a redução do consumo elétrico, propondo algoritmos de Filtragem Colaborativa e de Conteúdo, usando nesse processo dados de uma pesquisa de comportamento entre voluntários, dados do governo, voluntários e um software que simula o consumo elétrico residencial. Após a experimentação concluiu-se que existem índicos da eficiência dos algoritmos propostos para o contexto de eficiência energética. A partir dos resultados podemos concluir que, por ser uma área nova ainda existem muitos conceitos a serem explorados no uso de técnicas de análise de dados para a eficiência energética e que o estudo realizado apresenta contribuições importantes para trabalhos futuros. / The recent increase in demand for resources, and the imminent potential shortage of these has created a new kind of societal concern which spawned an emphasis for more efficient methods on how to use these resources. One resource, in particular, is electricity and the glaring concern for how it is consumed; mainly due to the use of non-renewable way for generating electricity, E.G. thermal power using coal. Currently, in Brazil, 73.1% of the country’s energy is generated from renewable sources. Other factors such as climate change and extended periods of drought may impact the total amount of energy being generated, thus making the use of alternative methods for power generation a necessity – which in turn inflates the costs for the consumer. Within this context comes the need to develop tools and ideas which help to make the consumption of energy more efficient by reducing the production of electricity which will be beneficial to both the dealers and end consumers. One option to solve this problem would be to focus on the consumption in residential areas, as in Brazil, the residential sector is the third largest consumer of energy, consuming on average 24.78% of the total power generated in the country. This paper proposes a solution which uses mapping between energy efficient concepts and concepts of recommender systems to help promote the reduction of electrical consumption. The proposed algorithms combined with Collaborative Filtering and Content has used the processed data from behavioral surveys among volunteers, data government and software to stimulate the residential electricity consumption. From the results, we can conclude that with this relatively new ambit of discovery comes many concepts yet to be explored in the use of data analysis techniques for energy efficiency, and the importance of the application to future work.
|
Page generated in 0.0539 seconds