Spelling suggestions: "subject:"privacy"" "subject:"eprivacy""
511 |
Personlig integritet på Internet : En studie om attityder / Privacy on the Internet : A study of attitudesLindholm, Sara, Nandorf, Moa January 2010 (has links)
The internet has fundamentally changed the way people communicate. With all the information that we are sharing over the internet, and the ways which companies want to use our information, the importance of keeping our private information secure has increased. This thesis aims to discover what attitudes internet users have against privacy on the internet, and what – if anything – they are doing to protect their personal privacy. We distributed an online survey to internet users in the Stockholm area, and conducted three interviews with persons in our target population. The results of these studies show that people in general are very aware of privacy concerns on the internet, but that their attitudes toward how important personal privacy on the internet is, differ somewhat. / Internet har fundamentalt förändrat sättet som vi människor kommunicerar. Med all den information som vi delar med oss av över internet, och de olika sätten som företag vill använda vår information, så har vikten av att hålla viss information skyddad/privat/säker ökat. Denna uppsats ämnar att undersöka vilka attityder internetanvändare har till personlig integritet på internet, och vad – om något – de gör för att skydda sin personliga integritet. Vi delade ut en webbaserad enkät till internetanvändare i Stockholms län, och genomförde tre intervjuer med personer i vår målgrupp. Resultaten av dessa studier visar att människor generellt är väldigt medvetna om vikten att vara privat på internet, men att deras attityder mot hur viktigt personlig integritet på internet är, varierar.
|
512 |
Acceptance of a Remote Desktop Access System to Increase Workspace AwarenessWilliams, Jennifer January 2000 (has links)
Awareness systems are being designed and implemented to improve employee connections. This study examines the variables that affect the acceptance of an awareness system. The awareness system that was used for this research was a remote desktop access system. The independent variables investigated were the degree of detail that can be viewed on a desktop, whether the users can control who can access their desktops, whether the users can control when others have access to their desktops, the equality of access to others' desktops, and task-technology fit. In determining the effect of the independent variables on acceptance, the dependent variable, the mediating variables of privacy and fairness were taken into account. There was a preliminary survey conducted to determine appropriate situations to be used in the scenario descriptions for the survey for the main study. The methodology of policy-capturing surveys was utilized to conduct the survey for the main study in order to investigate the model developed in this study. The policy-capturing survey was pre-tested on University of Waterloo students. The main study was conducted in two different organizations, the subjects for the first study were employees from the Information Systems and Technology Department at the University of Waterloo and the subjects for the second study were employees from Ciber Incorporated. Results indicate that perceptions of privacy and perceptions of fairness have significant effects on acceptance. Also, perceptions of privacy and fairness are related to details in the design of the remote desktop access system. This research may be a contribution to this field since little research has been conducted in this area and implications can be drawn for future research on acceptance of awareness systems.
|
513 |
Secure and Privacy-Preserving Vehicular CommunicationsLin, Xiaodong January 2008 (has links)
Road safety has been drawing increasing attention in the public, and has been subject to extensive efforts from both industry and academia in mitigating the impact of traffic accidents. Recent
advances in wireless technology promise new approaches to facilitating road safety and traffic management, where each vehicle
(or referred to as On-board unit (OBU)) is allowed to communicate with each other as well as with Roadside units (RSUs), which are located in some critical sections of the road, such as a traffic light, an intersection, and a stop sign. With the OBUs and RSUs, a self-organized network, called Vehicular Ad Hoc Network (VANET), can
thus be formed. Unfortunately, VANETs have faced various security threats and privacy concerns, which would jeopardize the public
safety and become the main barrier to the acceptance of such a new technology. Hence, addressing security and privacy issues is a
prerequisite for a market-ready VANET. Although many studies have recently addressed a significant amount of efforts in solving the related problems, few of the studies has taken the scalability
issues into consideration. When the traffic density is getting large, a vehicle may become unable to verify the authenticity of the messages sent by its neighbors in a timely manner, which may result
in message loss so that public safety may be at risk. Communication overhead is another issue that has not been well addressed in previously reported studies. Many efforts have been made in recent
years in achieving efficient broadcast source authentication and data integrity by using fast symmetric cryptography. However, the dynamic nature of VANETs makes it very challenging in the applicability of these symmetric cryptography-based protocols.
In this research, we propose a novel Secure and Efficient RSU-aided Privacy Preservation Protocol, called SERP^3, in order to achieve efficient secure and privacy-preserving Inter-Vehicle
Communications (IVCs). With the commitments of one-way key chains distributed to vehicles by RSUs, a vehicle can effectively
authenticate any received message from vehicles nearby even in the presence of frequent change of its neighborship. Compared with previously reported public key infrastructure (PKI)-based packet
authentication protocols for security and privacy, the proposed protocol not only retains the security and privacy preservation properties, but also has less packet loss ratio and lower communication overhead, especially when the road traffic is heavy. Therefore, the protocol solves the scalability and communication overhead issues, while maintaining acceptable packet latency. However, RSU may not exist in some situations, for example, in the early stage deployment phase of VANET, where unfortunately, SERP^3 is not suitable. Thus, we propose a complementary Efficient and Cooperative Message Validation Protocol, called ECMVP, where each vehicle
probabilistically validates a certain percentage of its received messages based on its own computing capacity and then reports any invalid messages detected by it.
Since the ultimate goal of designing VANET is to develop vehicle safety/non-safety related applications to improve road safety and facilitate traffic management, two vehicle applications are further proposed in the research to exploit the advantages of vehicular communications. First, a novel vehicle safety application for achieving a secure road traffic control system in VANETs is developed. The proposed application helps circumvent vehicles safely
and securely through the areas in any abnormal situation, such as a car crash scene, while ensuring the security and privacy of the drivers from various threats. It not only enhances traveler safety but also minimizes capacity restrictions due to any unusual situation. Second, the dissertation investigates a novel mobile payment system for highway toll collection by way of vehicular communications, which addresses all the issues in the currently existing toll collection technologies.
|
514 |
Network Coding based Information Security in Multi-hop Wireless NetworksFan, Yanfei January 2010 (has links)
Multi-hop Wireless Networks (MWNs) represent a class of networks where messages are forwarded through multiple hops of wireless transmission. Applications of this newly emerging communication paradigm include asset monitoring wireless sensor networks (WSNs), command communication mobile ad hoc networks (MANETs), community- or campus-wide wireless mesh networks (WMNs), etc.
Information security is one of the major barriers to the wide-scale deployment of MWNs but has received little attention so far. On the one hand, due to the open wireless channels and multi-hop wireless transmissions, MWNs are vulnerable to various information security threats such as eavesdropping, data injection/modification, node compromising, traffic analysis, and flow tracing. On the other hand, the characteristics of MWNs including the vulnerability of intermediate network nodes, multi-path packet forwarding, and limited computing capability and storage capacity make the existing information security schemes designed for the conventional wired networks or single-hop wireless networks unsuitable for MWNs. Therefore, newly designed schemes are highly desired to meet the stringent security and performance requirements for the information security of MWNs.
In this research, we focus on three fundamental information security issues in MWNs: efficient privacy preservation for source anonymity, which is critical to the information security of MWNs; the traffic explosion issue, which targets at preventing denial of service (DoS) and enhancing system availability; and the cooperative peer-to-peer information exchange issue, which is critical to quickly achieve maximum data availability if the base station is temporarily unavailable or the service of the base station is intermittent. We have made the following three major contributions.
Firstly, we identify the severe threats of traffic analysis/flow tracing attacks to the information security in network coding enabled MWNs. To prevent these attacks and achieve source anonymity in MWNs, we propose a network coding based privacy-preserving scheme. The unique “mixing” feature of network coding is exploited in the proposed scheme to confuse adversaries from conducting advanced privacy attacks, such as time correlation, size correlation, and message content correlation. With homomorphic encryption functions, the proposed scheme can achieve both privacy preservation and data confidentiality, which are two critical information security requirements.
Secondly, to prevent traffic explosion and at the same time achieve source unobservability in MWNs, we propose a network coding based privacy-preserving scheme, called SUNC (Source Unobservability using Network Coding). Network coding is utilized in the scheme to automatically absorb dummy messages at intermediate network nodes, and thus, traffic explosion induced denial of service (DoS) can be naturally prevented to ensure the system availability. In addition to ensuring system availability and achieving source unobservability, SUNC can also thwart internal adversaries.
Thirdly, to enhance the data availability when a base station is temporarily unavailable or the service of the base station is intermittent, we propose a cooperative peer-to-peer information exchange scheme based on network coding. The proposed scheme can quickly accomplish optimal information exchange in terms of throughput and transmission delay.
For each research issue, detailed simulation results in terms of computational overhead, transmission efficiency, and communication overhead, are given to demonstrate the efficacy and efficiency of the proposed solutions.
|
515 |
On Achieving Secure Message Authentication for Vehicular CommunicationsZhang, Chenxi January 2010 (has links)
Vehicular Ad-hoc Networks (VANETs) have emerged as a new application scenario that is envisioned to revolutionize the human driving experiences, optimize traffic flow control systems, etc. Addressing security and privacy issues as the prerequisite of VANETs' development must be emphasized. To avoid any possible malicious attack and resource abuse, employing a digital signature scheme is widely recognized as the most effective approach for VANETs to achieve authentication, integrity, and validity. However, when the number of signatures received by a vehicle becomes large, a scalability problem emerges immediately, where a vehicle could be difficult to sequentially verify each received signature within 100-300 ms interval in accordance with the current Dedicated Short Range Communications (DSRC) protocol. In addition, there are still some unsolved attacks in VANETs such as Denial of Service (Dos) attacks, which are not well addressed and waiting for us to solve. In this thesis, we propose the following solutions to address the above mentioned security related issues.
First of all, to address the scalability issues, we introduce a novel roadside unit (RSU) aided message authentication scheme, named RAISE, which makes RSUs responsible for verifying the authenticity of messages sent from vehicles and for notifying the results back to vehicles. In addition, RAISE adopts the k-anonymity property for preserving user privacy, where a message cannot be associated with a common vehicle.
Secondly, we further consider the situation that RSUs may not cover all the busy streets of a city or a highway in some situations, for example, at the beginning of a VANETs' deployment period, or due to the physical damage of some RSUs, or simply for economic considerations. Under these circumstances, we further propose an efficient identity-based batch signature verification scheme for vehicular communications. The proposed scheme can make vehicles verify a batch of signatures once instead of one after another, and thus it efficiently increases vehicles' message verification speed. In addition, our scheme achieves conditional privacy: a distinct pseudo identity is generated along with each message, and a trust authority can trace a vehicle's real identity from its pseudo identity. In order to find invalid signatures in a batch of signatures, we adopt group testing technique which can find invalid signatures efficiently.
Lastly, we identify a DoS attack, called signature jamming attack (SJA), which could easily happen and possibly cause a profound vicious impact on the normal operations of a VANET, yet has not been well addressed in the literature. The SJA can be simply launched at an attacker by flooding a significant number of messages with invalid signatures that jam the surrounding vehicles and prevent them from timely verifying regular and legitimate messages. To countermeasure the SJA, we introduces a hash-based puzzle scheme, which serves as a light-weight filter for excluding likely false signatures before they go through relatively lengthy signature verification process. To further minimize the vicious effect of SJA, we introduce a hash recommendation mechanism, which enables vehicles to share their information so as to more efficiently thwart the SJA.
For each research solution, detailed analysis in terms of computational time, and transmission overhead, privacy preservation are performed to validate the efficiency and effectiveness of the proposed schemes.
|
516 |
BridgeSPA: A Single Packet Authorization System for Tor BridgesSmits, Rob January 2012 (has links)
Tor is a network designed for low-latency anonymous communications. Tor clients form circuits through relays that are listed in a public directory, and then relay their encrypted traffic through these circuits. This indirection makes it difficult for a local adversary to determine with whom a particular Tor user is communicating. Tor may also be used to circumvent regional Internet censorship, since the final hop of a user's connection can be in a different country. In response, some local adversaries restrict access to Tor by blocking each of the publicly listed relays. To deal with such an adversary, Tor uses bridges, which are unlisted relays that can be used as alternative entry points into the Tor network. Unfortunately, issues with Tor's bridge implementation make it easy to discover large numbers of bridges. This makes bridges easy to block. Also, an adversary that hoards this information may use it to determine when each bridge is online over time. If a bridge operator also browses with Tor on the same machine, this information may be sufficient to deanonymize him. We present BridgeSPA as a method to mitigate these issues. A client using BridgeSPA relies on innocuous single packet authorization (SPA) to present a time-limited key to a bridge. Before this authorization takes place, the bridge will not reveal whether it is online. We have implemented BridgeSPA as a working proof-of-concept for GNU/Linux systems. The implementation is available under a free licence. We have integrated our implementation to work in an OpenWRT environment. This enables BridgeSPA support for any client behind a deployed BridgeSPA OpenWRT router, no matter which operating system they are running.
|
517 |
Design and Analysis of Security Schemes for Low-cost RFID SystemsChai, Qi 01 1900 (has links)
With the remarkable progress in microelectronics and low-power semiconductor technologies, Radio Frequency IDentification technology (RFID) has moved from obscurity into mainstream applications, which essentially provides an indispensable foundation to realize ubiquitous computing and machine perception. However, the catching and exclusive characteristics of RFID systems introduce growing security and privacy concerns. To address these issues are particularly challenging for low-cost RFID systems, where tags are extremely constrained in resources, power and cost. The primary reasons are: (1) the security requirements of low-cost RFID systems are even more rigorous due to large operation range and mass deployment; and (2) the passive tags' modest capabilities and the necessity to keep their prices low present a novel problem that goes beyond the well-studied problems of traditional cryptography. This thesis presents our research results on the design and the analysis of security schemes for low-cost RFID systems.
Motivated by the recent attention on exploiting physical layer resources in the design of security schemes, we investigate how to solve the eavesdropping, modification and one particular type of relay attacks toward the tag-to-reader communication in passive RFID systems without requiring lightweight ciphers. To this end, we propose a novel physical layer scheme, called Backscatter modulation- and Uncoordinated frequency hopping-assisted Physical Layer Enhancement (BUPLE). The idea behind it is to use the amplitude of the carrier to transmit messages as normal, while to utilize its periodically varied frequency to hide the transmission from the eavesdropper/relayer and to exploit a random sequence modulated to the carrier's phase to defeat malicious modifications. We further improve its eavesdropping resistance through the coding in the physical layer, since BUPLE ensures that the tag-to-eavesdropper channel is strictly noisier than the tag-to-reader channel. Three practical Wiretap Channel Codes (WCCs) for passive tags are then proposed: two of them are constructed from linear error correcting codes, and the other one is constructed from a resilient vector Boolean function. The security and usability of BUPLE in conjunction with WCCs are further confirmed by our proof-of-concept implementation and testing.
Eavesdropping the communication between a legitimate reader and a victim tag to obtain raw data is a basic tool for the adversary. However, given the fundamentality of eavesdropping attacks, there are limited prior work investigating its intension and extension for passive RFID systems. To this end, we firstly identified a brand-new attack, working at physical layer, against backscattered RFID communications, called unidirectional active eavesdropping, which defeats the customary impression that eavesdropping is a ``passive" attack. To launch this attack, the adversary transmits an un-modulated carrier (called blank carrier) at a certain frequency while a valid reader and a tag interacts at another frequency channel. Once the tag modulates the amplitude of reader's signal, it causes fluctuations on the blank carrier as well. By carefully examining the amplitude of the backscattered versions of the blank carrier and the reader's carrier, the adversary could intercept the ongoing reader-tag communication with either significantly lower bit error rate or from a significantly greater distance away. Our concept is demonstrated and empirically analyzed towards a popular low-cost RFID system, i.e., EPC Gen2. Although active eavesdropping in general is not trivial to be prohibited, for a particular type of active eavesdropper, namely a greedy proactive eavesdropper, we propose a simple countermeasure without introducing extra cost to current RFID systems.
The needs of cryptographic primitives on constraint devices keep increasing with the growing pervasiveness of these devices. One recent design of the lightweight block cipher is Hummingbird-2. We study its cryptographic strength under a novel technique we developed, called Differential Sequence Attack (DSA), and present the first cryptanalytic result on this cipher. In particular, our full attack can be divided into two phases: preparation phase and key recovery phase. During the key recovery phase, we exploit the fact that the differential sequence for the last round of Hummingbird-2 can be retrieved by querying the full cipher, due to which, the search space of the secret key can be significantly reduced. Thus, by attacking the encryption (decryption resp.) of Hummingbird-2, our algorithm recovers 36-bit (another 28-bit resp.) out of 128-bit key with $2^{68}$ ($2^{60}$ resp.) time complexity if particular differential conditions of the internal states and of the keys at one round can be imposed. Additionally, the rest 64-bit of the key can be exhaustively searched and the overall time complexity is dominated by $2^{68}$. During the preparation phase, by investing $2^{81}$ effort in time, the adversary is able to create the differential conditions required in the key recovery phase with at least 0.5 probability.
As an additional effort, we examine the cryptanalytic strength of another lightweight candidate known as A2U2, which is the most lightweight cryptographic primitive proposed so far for low-cost tags. Our chosen-plaintext-attack fully breaks this cipher by recovering its secret key with only querying the encryption twice on the victim tag and solving 32 sparse systems of linear equations (where each system has 56 unknowns and around 28 unknowns can be directly obtained without computation) in the worst case, which takes around 0.16 second on a Thinkpad T410 laptop.
|
518 |
Security and Privacy Preservation in Vehicular Social NetworksLu, Rongxing January 2012 (has links)
Improving road safety and traffic efficiency has been a long-term endeavor for the government, automobile industry and academia. Recently, the U.S. Federal Communication Commission (FCC) has allocated a 75 MHz spectrum at 5.9 GHz for vehicular communications, opening a new door to combat the road fatalities by letting vehicles communicate to each other on the roads. Those communicating vehicles form a huge Ad Hoc Network, namely Vehicular Ad Hoc Network (VANET). In VANETs, a variety of applications ranging from the safety related (e.g. emergence report, collision warning) to the non-safety related (e.g., delay tolerant network, infortainment sharing) are enabled by vehicle-to-vehicle (V-2-V) and vehicle-to-roadside (V-2-I) communications. However, the flourish of VANETs still hinges on fully understanding and managing the challenging issues over which the public show concern, particularly, security and privacy preservation issues. If the traffic related messages are not authenticated and integrity-protected in VANETs, a single bogus and/or malicious message can potentially incur a terrible traffic accident. In addition, considering VANET is usually implemented in civilian scenarios where locations of vehicles are closely related to drivers, VANET cannot be widely accepted by the public if VANET discloses the privacy information of the drivers, i.e., identity privacy and location privacy. Therefore, security and privacy preservation must be well addressed prior to its wide acceptance. Over the past years, much research has been done on considering VANET's unique characteristics and addressed some security and privacy issues in VANETs; however, little of it has taken the social characteristics of VANET into consideration. In VANETs, vehicles are usually driven in a city environment, and thus we can envision that the mobility of vehicles directly reflects drivers' social preferences and daily tasks, for example, the places where they usually go for shopping or work. Due to these human factors in VANETs, not only the safety related applications but also the non-safety related applications will have some social characteristics.
In this thesis, we emphasize VANET's social characteristics and introduce the concept of vehicular social network (VSN), where both the safety and non-safety related applications in VANETs are influenced by human factors including human mobility, human self-interest status, and human preferences. In particular, we carry on research on vehicular delay tolerant networks and infotainment sharing --- two important non-safety related applications of VSN, and address the challenging security and privacy issues related to them. The main contributions are, i) taking the human mobility into consideration, we first propose a novel social based privacy-preserving packet forwarding protocol, called SPRING, for vehicular delay tolerant network, which is characterized by deploying roadside units (RSUs) at high social intersections to assist in packet forwarding. With the help of high-social RSUs, the probability of packet drop is dramatically reduced and as a result high reliability of packet forwarding in vehicular delay tolerant network can be achieved. In addition, the SPRING protocol also achieves conditional privacy preservation and resist most attacks facing vehicular delay tolerant network, such as packet analysis attack, packet tracing attack, and black (grey) hole attacks. Furthermore, based on the ``Sacrificing the Plum Tree for the Peach Tree" --- one of the Thirty-Six Strategies of Ancient China, we also propose a socialspot-based packet forwarding (SPF) protocol for protecting receiver-location privacy, and present an effective pseudonyms changing at social spots strategy, called PCS, to facilitate vehicles to achieve high-level location privacy in vehicular social network; ii) to protect the human factor --- interest preference privacy in vehicular social networks, we propose an efficient privacy-preserving protocol, called FLIP, for vehicles to find like-mined ones on the road, which allows two vehicles sharing the common interest to identify each other and establish a shared session key, and at the same time, protects their interest privacy (IP) from other vehicles who do not share the same interest on the road. To generalize the FLIP protocol, we also propose a lightweight privacy-preserving scalar product computation (PPSPC) protocol, which, compared with the previously reported PPSPC protocols, is more efficient in terms of computation and communication overheads; and iii) to deal with the human factor -- self-interest issue in vehicular delay tolerant network, we propose a practical incentive protocol, called Pi, to stimulate self-interest vehicles to cooperate in forwarding bundle packets. Through the adoption of the proper incentive policies, the proposed Pi protocol can not only improve the whole vehicle delay tolerant network's performance in terms of high delivery ratio and low average delay, but also achieve the fairness among vehicles.
The research results of the thesis should be useful to the implementation of secure and privacy-preserving vehicular social networks.
|
519 |
Attitudes towards mobile payment : An empirical study of the consumers’ perception of security, privacy and convenienceLindbäck, Karin, Blommé, Carl January 2011 (has links)
Mobile payment is a new payment method that is being introduced on the Swedish market, but has not yet come to its breakthrough. This thesis investigates the attitude the Swedish consumer has towards mobile payment. Based on previous surveys and theory, three main attributes, security, privacy and convenience, were chosen to represent the attitude of the consumer towards mobile payment. In order to analyze the data obtained from the surveys conducted, the multi-attribute attitude model was used. The model showed that convenience was the most beneficial attribute in mobile payment, followed by security and then privacy. Security was the attribute that the survey participants valued the most when it comes to payment methods, but was also the attribute they thought that mobile payment would lack the most. Therefore security was determined to be the most important aspect when it comes to the success of mobile payment.
|
520 |
När det privata blir offentligt : En kvalitativ studie om hur privatliv framställs i två kända bloggarÖst, Emelie, Söderström, Fanny January 2010 (has links)
I bloggar hittar vi mängder av personlig information som berör både blogginnehavaren och dennes anhöriga, medvetet eller omedvetet. Den här studien avser att öka förståelsen för hur privatliv och personligt relaterad information framställs i två kända personers bloggar. Studien baseras på två bloggar skrivna av offentliga, kända personer - Alex Schulman och Pernilla Wahlgren. Han är en känd medieentreprenör och skribent, hon är en folkkär artist och sångerska från en teaterfamilj. Dessa bloggare är redan kända av allmänheten, något som gör att gränsen för vad som är privat och offentlig information blir väldigt suddig. Genom en kvalitativ textanalys i två steg, en beskrivande samt en tolkande textanalys, kommer resultatet visa vilka ämnen som tas upp i bloggarna. I den beskrivande analysen studeras texten, och teman som är unika för bloggarna genereras ur texterna. Därefter tolkas och studeras dessa teman i den tolkande textanalysen för att få en förståelse för den information som bloggarna lämnar ut. Med utgångspunkt i Privacy theory diskuteras vilken typ av personlig information som blogginnehavarna delar med sig utav. Utifrån resultatet av analysen visar studien att de ämnen som presenteras i bloggarna är följande: privat i offentligheten, vardagsreflektioner, självgranskning, känslouttryck, familjeliv och arbete och familj.
|
Page generated in 0.0358 seconds