Spelling suggestions: "subject:"E. cold""
121 |
Studies on the succinate oxidase system of E. coliKim, In-Cheol January 1971 (has links)
The succinate oxidase system of E. coli has been studied from three main viewpoints: (a) the preparation and properties of succinate dehydrogenase (SDH), (b) the function of nonheme iron, and (c) the sequence of the components of the respiratory chain.
Three different preparations containing SDH activity were isolated
from this organism. These were the particulate fraction, soluble respiratory complex, and soluble SDH. The partial purification and characterization of these enzymes or complexes was performed.
The particulate fraction consisted of membrane fragments which contained the whole respiratory chain and which oxidized succinate and NADH. The soluble respiratory complex contained both SDH and cytochrome b(1). The molecular weight was 1.6 x 10(6). The soluble SDH did not contain cytochrome b(1) and had a molecular weight of 100,000.
One of the characteristic properties of SDH of the particulate fraction and the soluble respiratory complex was activation. If the enzyme was prepared in phosphate buffer both succinate oxidase and SDH activities could be activated by heating at 38° in the presence of succinate. The enzyme was stabilized by succinate in the absence of heating. Activation of succinate oxidase seemed to be mainly due to the activation of SDH.
A second activation phenomenon which was independent of heat treatment was also observed. When the enzyme was prepared in Tris buffer with succinate the activated enzyme was formed at 0°. Heating did not further increase its activity.
Activation by heat was irreversible. The heat-activated enzyme deactivated to a form which could not be reactivated. The heat-independent activated enzyme was more stable. The two activation phenomena thus seemed to be different. In contrast, the soluble SDH did not show the activation phenomenon nor was it stabilized by substrate.
A mechanism for the activation of SDH is proposed.
The nature, properties, role and location of nonheme iron in the particulate fraction of E. coli was investigated. The level of nonheme ferrous or ferric iron in the particulate fraction was determined spectrophotometrically using o-phenanthroline or Tiron.
Analysis of iron by both chemical and spectrophotometric methods showed that only 45% of the total iron reacted with o-phenanthroline ("o-phenanthroline-reacting iron"). Heme iron constituted 5% of the total iron. The rest of total iron was not exposed by treating the particulate fraction with detergents or urea. The nature of the remainder of the total iron (50%) is unknown. Half of the o-phenanthroline-reacting iron reacted directly with o-phenanthroline ("directly-reacting iron"), but the other half only reacted after addition of dithionite ("dithionite-reducible iron").
Directly-reacting iron appeared to be ferric iron which was located
in the hydrophobic region of the particulate fraction. This ferric iron could be reduced by sulfhydryl groups of the protein, The dithionite-reducible iron was probably located at the surface of the particulate fraction and could not be reduced by sulfhydryl groups.
Part of the dithionite-reducible iron was reduced by NADH or succinate. This substrate-reducible iron, probably less than 10% of the total iron, was located in the cytochrome b(1) region of the respiratory chain. It was not associated with SDH.
The effect of ultraviolet irradiation, inhibitors and extraction of ubiquinone on the activities of SDH and succinate oxidase was examined.
From these experiments, and those outlined above, a scheme for the sequence of the succinate oxidase chain of E. coli is proposed. / Medicine, Faculty of / Biochemistry and Molecular Biology, Department of / Graduate
|
122 |
Nucleoside triphosphate pools in cultures of Escherichia coli.Mychajlowska, Lydia January 1970 (has links)
Nucleotide pools in a synchronized culture of Escherichia coli B/r/l oscillate as a function of age. Purine nucleotides showed a gradual increase from zero age to the time of subsequent division, with a maximal 50% increase immediately prior to division. In contrast, pyrimidine nucleotides underwent a diamatic increase of about 50% in the first half of the generation cycle, declining at a time coincident with the termination of a round of DNA replication. A second 50 - 70% increase started at the time of the onset of DNA replication and continued towards cell division, as did the purine.
The fluctuation of pyrimidines between zero age and the middle of the division cycle suggests a functional relationship between pyrimidine pool fluctuations and the regulation of DNA replication.
Nucleotide pools decrease immediately in the presence of chloramphenicol to 10% of the control concentrations, and overshoot 50 - 70% in restoration of protein synthesis. Feedback inhibition of carbomyl phosphate synthesis (which is required for pyrimidine biosynthesis) by excess arginine may explain the fluctuations of nucleotide pools in the presence of chloramphenicol. Immediate depletion of nucleotide pools could be du to a very rapid turnover of nucleotide biosynthetic enzymes. The depletion of precursor pools, may explain the inability of a cell to reinitiate DNA replication in the absence of protein synthesis. In a comparison experiment, however, nucleotide pools in a temperature-sensitive initiator mutant were seen to accumulate at non-permissive temperature.
In this case, protein synthesis occurred but initiation of DNA synthesis could not take place. This confirms the current hypothesis that a functional initiator protein is required for reinitation. Nucleotide pools in the presence of nalidixic acid dropped slightly and although no DNA synthesis occurred, pools showed no accumulation. This suggested a secondary effect of the inhibitor. Experiments prior to the pool analyses showed the importance of balanced growth in such studies. The cell size distribution was seen to be a more valid criterion than exponential increase in numbers. Exposure to cold temperatures was seen to upset balanced growth for at least one generation. / Science, Faculty of / Microbiology and Immunology, Department of / Graduate
|
123 |
Structural studies of Escherichia coli K26 and K46-50 using chemical and microbiological methodsBeynon, Linda M. January 1985 (has links)
The capsular polysaccharides of Escherichia coli are immunogenic and antigenic. When conjugated to a carrier protein these polysaccharides can be used as vaccines. A knowledge of the structure of bacterial capsular polysaccharides is essential for understanding antibody-antigen interaction and also for understanding the chemical basis of serological differentiation. For these reasons structural studies of some E. coli capsular polysaccharides are being undertaken in this laboratory.
In this thesis a preliminary investigation into the structures of capsular polysaccharides from E. coli serotypes K/46, K/47, K/48, K49 and K50 is presented. The qualitative composition of each polysaccharide was determined by varying the hydrolytic conditions used to cleave the glycosidic bonds between the monosaccharide units. Table I shows the sugars present in each capsular polysaccharide. [Table Omitted]
The ratio of the sugars in each polysaccharide was determined using methanolysis followed by reduction with sodium borohydride. The presence of amino sugars was confirmed by deamination of the hydrolyzed polysaccharide and detection of the product by g.l.c.
G.l.c.-m.s., of the alditol acetates of the monosaccharides obtained by hydrolysis of the polysaccharides, was used to confirm the type of monsaccharide. present in each polysaccharide,
₁H-N.m.r. spectroscopy was utilized to confirm the presence of deoxy sugars, amino sugars and non-carbohydrate substituents. E. coli K47 and K50 capsular polysaccharides were both found to have pyruvate present as a substituent.
A bacteriophage was isolated from sewage for each of E. coli K47, K48 and K49 serotypes. Phage 47 also attacked E. coli K48 and K49 bacteria.
The structure of E. coli K26 capsular polysaccharide was investigated using the techniques of acid hydrolysis, carbodiimide reduction and methanolysis followed by reduction with sodium borohydride. The polysaccharide was degraded using a bacteriophage-borne glycanase. The position of cleavage found by methylation of the reduced oligosaccharide. Combination of the data obtained from the chemical analysis, n.m.r spectroscopy and the bacteriophage degradation gave the two following possible structures for the E. coli K26 capsular polysaccharide. [Formula Omitted] / Science, Faculty of / Chemistry, Department of / Graduate
|
124 |
A structural investigation of the capsular antigens of two E. coli strains K26 and K49Beynon, Linda M. January 1988 (has links)
Diseases caused by encapsulated bacteria such as E. coli are among the most prevalent in the world. The polysaccharide capsule (K antigen) is an important factor in the virulence and pathogenicity of E. coli bacteria. Serological classification of these bacteria is also based mainly on the immunologically dominant capsular polysaccharide, due to its location at the bacterial cell surface. In order to understand the role played by the K antigens in bacterial infections, and the chemical basis of serological differentiation, the systematic structural investigation of all the capsular polysaccharides of E. coli (74 serotypes) is underway in this laboratory and others. Presented in this thesis are the structures of the K antigens of E. coli K26 and K49 serotypes.
K26 capsular polysaccharide was studied using techniques
such as methylation analysis, β-elimination, Smith degradation and partial hydrolysis. The oligosaccharides produced by the partial acid hydrolysis were analysed by g.c.-c.i.-m.s. To aid in the characterization of these oligosaccharides, a 'library' of relative retention times and c.i. mass spectra of authentic standards (di-, tri-, and tetra-saccharides) was prepared. The results from these analyses, together with data from n.m.r. spectroscopy of the native polysaccharide and derived oligosaccharides, allowed the following structure to be assigned to E. coli K26 polysaccharide. [Formula Omitted] E. coli K49 capsular antigen contains two amino acids, serine and threonine, amidically linked to the carboxyl group of glucuronic acid. Techniques used in the structural elucidation were raethylation analysis, acetolysis, amino acid analysis, HF hydrolysis, partial acid hydrolysis and Smith degradation. The oligosaccharides generated by the three latter methods were analysed by g.c.-c.i.-m.s. and n.m.r. spectroscopy. A bacteriophage-associated enzyme degradation of the K49 antigen yielded a product (P1) which consisted of a single repeating unit (see below). Results from the analyses of P1 and the chemically produced oligosaccharides were in agreement with the following assignment for the structure of the E. coli K49 capsular polysaccharide. [Formula Omitted] / Science, Faculty of / Chemistry, Department of / Graduate
|
125 |
Caracterização eletretroforetica e expressão das fimbrias Fy e 31A de amostrasde Escherichia coli de origem bovinaManfio, Gilson Paulo 20 July 2018 (has links)
Orientação: Wanderley Dias da Silveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-07-20T02:07:58Z (GMT). No. of bitstreams: 1
Manfio_GilsonPaulo_M.pdf: 8642301 bytes, checksum: b93aa6979c378ac694a0d6d30bca8b05 (MD5)
Previous issue date: 1990 / Resumo: Amostras de Escherichia coli portadoras das fímbrias FY e 31A, associadas a diarréia e septicemia em bovinos, foram estudadas visando determinar a localização da expressão gênica destas fímbrias. As amostras bacterianas 31A+: BZ43, BZ2468 e 31A e FY+: Att25, 54-5, 2147-4 e 11a, foram analisadas quanto à produção de enterotoxinas (STI e LT), VT, hemolisina, resistência a antibióticos, hemaglutinação D-manose resistente com eritrócitos e reação com antissoros específicos. A caracterização das fímbrias envolveu microscopia eletrônica, análise eletroforética de proteínas totais, de superfície e de membrana em SDS-PAGE e "Western Blotting". Foi também verificada a presença de plasmídios conjugativos nas amostras bacterianas e a caracterização dos transconjugantes para a expressão de FY e 31A. Uma amostra portadora de fímbria 31A (amostra BZ43) foi mutagenizada com transposon TnphoA. A expressão de 31A foi avaliada através de aglutinação com antissoros específicos, hemaglutinação de eritrócitos de boi, adesão a células Hela em cultura de tecido e patogenicidade em teste de competição em camundongo. A análise dos padrões de hemaglutinação, proteínas totais, proteínas de superfície e aglutinação com antissoros específicos permitiu a determinação das subunidades protéicas destas fímbrias como sendo aproximadamente 20 kDa para FY e 17 kDa para 31A. A amostra 11a, anteriormente classificada como portadora de fímbria FY, foi reclassificada como portadora de fímbria 31A através dos resultados de SDS-PAGE de proteínas de superfície e reação com antissoros específicos. As amostras Att25, BZ2468 e 31A apresentaram plasmídios conjugativos com marcas de resistência a antibióticos, porém não codificaram para a expressão de fímbrias nas linhagens transconjugantes, sugerindo que a expressão destas fímbrias ocorre a nível cromossômico. A amostra BZ43 mutagenizada com TnphoA originou duas amostras não-hemaglutinantes (eritrócitos bovinos) que apresentaram reação com o anticorpo específico anti-31A. A perda da capacidade de hemaglutinação foi relacionada à ausência da subunidade da fímbria 31A (17 kDa) em SDS-PAGE de proteínas de superfície. Uma das amostras mutantes apresentou fímbrias em microscopia eletrônica. A ausência defímbrias no outro mutante foi relacionada à não expressão de uma proteína de membrana de 35 kDa. A perda da capacidade de eritrócitos de bovino, associada ou não aglutinação de à expressão de fímbrias, não alterou o padrão de adesão a células HeLa dos mutantes (AD). A amostra BZ43 e o mutante fimbriado não apresentaram patogenicidade no teste de competição em camundongos de 3 dias de idade. A perda da capacidade de hemaglutinação parece não conferir uma menor adesão da amostra mutante nestes animais / Abstract: Escherichia coli strains associated with diarrhea and septicemic infections of cattle were studied to determine the genetic expression of FY and 31A fimbriae. The strains 31A+: BZ43, BZ2468 and 31A, and FY+: Att25, 54-5, 2147-4 and 11a, were evaluated for enterotoxin production (STI and LT), VT, hemolysin, antibiotic resistance, mannose resistant RBC hemagglutination, and reaction with specific antisera. The characterization of fimbriae involved electron microscopy, SDS-PAGE of total, surface and membrane proteins and Western blotting. Conjugative plasmids in the strains were transferred and analyzed for FY and 31A expression. Hemagglutination, SDS-PAGE of total and surface proteins and reaction with specific antisera allowed the location of the fimbrial subunits at 20 kDa for FY and 17 kDa for 31A. Strain 11a, originally grouped as FY by others, was classified as 31A based on SDS-PAGE of surface proteins and reaction with specific antisera. Strains Att25, BZ2468 and
31A had conjugative plasmids coding antibiotic resistance marks, but transconjugants failed to express the fimbriae, suggesting it could be located in the bacterial chromosome. Strain BZ43 (31A) was mutagenized using TnphoA transposon and mutants with negative hemagglutination of bovine RBC were assayed with specific antiserum, and tested for adhesion to HeLa cells in tissue culture and pathogenicity in the mouse competition assay. Loss of hemagglutinating capacity was related to the lack of the 31A fimbriae subunit (17 kDa) on SDS-PAGE of surface proteins. One mutant strain showed fimbriae under electron microscopy. The absence of fimbriae in the other mutant strain was related to a missing 35 kDa membrane protein. Both mutants reacted positively with absorbed anti-31A antiserum suggesting that fímbrial epithopes were expressed. Loss of bovine RBC hemagglutination did not altered the adhesion patter to HeLa cells (AD), either in the fimbriated or in the non-fimbriated mutant strain. Strain BZ43 and the fimbriated mutant strain were non-pathogenic to 3 day old mice in the competition assay. The lack of hemagglutination seemed not to interfere with adhesion properties of the mutant strain in this assay / Mestrado / Genetica / Mestre em Ciências Biológicas
|
126 |
The effects of various menstra on the thermal resistance and leakage of metabolic products from Escherichia coli /Mariani, Eugene J. 01 January 1973 (has links) (PDF)
No description available.
|
127 |
Identification of Novel Members of the RpoS Regulon in Escherichia coli: The Alternative Sigma Factor, RpoS, is Regulated at the Transcriptional Level by BarA, a Member of the Family of Two-component Response Regulators.Audia, Jonathon P. January 1998 (has links)
The stationary phase-specific expression of many genes in free living bacteria such as Escherichia coli is controlled at the level of transcription by the alternative sigma factor RpoS encoded by the rpoS gene. This central regulator of E coli's stationary phase regulon (and several stress response regulons) is known to be required for the induction of over 30 proteins in stationary phase cultures and proteins induced in response to environmental stresses such as carbon starvation or osmotic upshift. To date, several RpoS-dependent genes have been identified in the literature. However, since no single inducer exists to which all members of the regulon respond, identifying RpoS-dependent genes based on phenotypic screening (e.g. carbon starvation inducible genes) methods may not provide us with a complete enumeration of the regulon. The present study is a continuation of previous work done with a previously-generated bank of 5,000 promoter- lacZ operon fusion mutants which were screened for RpoS-dependence by introducing an rpoS null allele into these strains and scoring for reduced ß-galactosidase activity. The identities of several of these RpoS-dependent promoter-lacZ fusions were determined by DNA sequencing and subsequent sequence analysis using the BLAST algorithm. The RpoS- and growth-phase-dependence of several of the genes identified in this study was verified by Northern blot analysis. The genes identified here fall in into three groups: (i) genes previously shown to be RpoS-dependent; (ii) genes of known function that werenot previously known to be RpoS-dependent; and (iii) ORFs not previously known to be RpoS-dependent.
Expression and activity of RpoS itself is subject to regulation that occurs at the levels of transcription, translation, and protein stability. How these different levels of control interact to affect the activation of RpoS and the RpoS regulon is only partially elucidated. This study identifies BarA as the first two-component transcriptional regulator required for the activity of rpoS and provides evidence that signal(s) may be present in exponentially growing cultures that lead to early exponential phase stimulation of rpoS and subsequently, the RpoS regulon. An E coli strain with a mutation in barA exhibits a hydrogen peroxide sensitive phenotype resulting from reduced levels of HPI and HPII catalase (which is under the control of RpoS). The reduction in HPII activity is a result of a reduction in the levels of katE message (encoding HPII) in a harA strain. Western blots probed with anti-RpoS antisera and Northern blots probed with an rpoS- specific probe demonstrate that this deficiency for the HPII catalase is caused by a decrease in the levels of the regulator, RpoS, present in the harA strain. Northern analysis and promoter-lacZ fusion expression data provide evidence for a model of early exponential phase expression of the RpoS regulon. Signal(s) responsible for this induction may be present in early exponential phase cultures and may ultimately lead to RpoS-dependent gene expression in stationary phase. / Thesis / Master of Science (MSc)
|
128 |
A study of the interaction of E. coli RNA polymerase and bacteriophage S13 DNARassart, Eric January 1977 (has links)
Note:
|
129 |
Explaining the urban and rural differences of Escherichia coli 0157 human infection in GrampianSolecki, Olivia. January 2008 (has links)
Thesis (Ph.D.)--Aberdeen University, 2008. / Title from web page (viewed on Apr. 21, 2009). Includes bibliographical references.
|
130 |
Identification of RpoS Regulated Genes and their Functions in Escherichia ColiVijayakumar, S. R. V. 01 1900 (has links)
This thesis is missing page 129. Other copies of this thesis do not have the page either. -Digitization Centre / E. coli expresses an alternative sigma factor, RpoS, in response to starvation and environmental stresses. RpoS is a global regulator and it controls numerous genes, which aids in counteracting these stresses. The RpoS regulon is large but is not completely characterized. We have previously identified over one hundred RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild type backgrounds. Forty-eight independent gene fusions were identified including several in well-characterized RpoS-regulated genes such as osmY, katE and otsA. Many of the fusions mapped to genes of unknown function or to genes that were not previously known to be under RpoS control. Based on the homology to other known bacterial genes, some of the RpoS regulated genes with unknown functions may be important for nutrient scavenging. To gain a better insight into the functions of these poorly characterized genes, we tested the ability of the fusion mutants to utilize various carbon sources and to utilize individual amino acids as carbon and nitrogen sources. The results indicate that most of the strains in rpos-backgrounds exhibited better growth in succinate and fumarate and in several amino acids than did the corresponding strains in wild-type backgrounds. / Thesis / Master of Science (MS)
|
Page generated in 0.0464 seconds