• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Fluid Boundaries: The Social Construction and Memory of Future Catastrophic Environmental Risk in a Community on the Oregon Coast

Shtob, Daniel 27 October 2016 (has links)
The Oregon coast is facing the dual perils of climate change and the catastrophic Cascadia subduction zone earthquake and tsunami, yet many communities remain unprepared. Using qualitative interviews with residents of Coos Bay, Oregon, this study traces how communities facing these perils socially construct their visions of change by “remembering the future” and how this future memory influences unsettlement that, in turn, can trigger revision of strategies of action to deal with environmental risk. Participants understood these risks through three interrelated themes: analogy to familiar circumstances such as regular winter flooding, narratives of isolation and self-reliance based in collective history, and visions of symbolic preparedness. Each of these themes drew the conversation away from the material reality of environmental catastrophe, reducing relative unsettlement. Since the way that communities collectively understand environmental risk may influence preparatory action, these observations can help to explain the disjunction between knowledge of risks and response.
172

Seismic considerations in the design of reinforced concrete multi-story structures

Mumtaz, Rizwan January 2010 (has links)
Typescript (photocopy). / Digitized by Kansas Correctional Industries
173

La rugosité des failles : analyse et conséquences sur l'hétérogénéité des ruptures sismiques / Roughness of fault surfaces : analyses and implications for the heterogeneity of seismic rupture

Candela, Thibault 23 March 2011 (has links)
Les aspérités géométriques d'un plan de faille contrôlent en partie toutes les étapes de la rupture sismique, depuis sa nucléation jusqu'à l'arrêt du séisme. L'objectif de ce travail est de caractériser la morphologie des surfaces de faille sur la large gamme d'échelles spatiales impliquées dans les tremblements de terre, puis d'explorer son influence sur l'organisation spatiale du glissement et des contraintes. L'approche utilisée inclue des observations de terrain couplées à une étude numérique et théorique. La combinaison de méthodes récentes de mesures topographiques (LiDAR, rugosimètre laser, interféromètre à lumière blanche), qui couvrent des gammes d'échelles spatiales complémentaires, permet de proposer un modèle géométrique cohérent de cinq zones de failles étudiées (Alpes françaises, Apennins, Turquie, Californie, Nevada). La rugosité des surfaces de failles montre des propriétés de dépendance d'échelle, et plus précisément suit un régime auto-affine anisotrope (l'exposant de rugosité est Hpara = 0.6 dans la direction du glissement et Hperp = 0.8 dans la direction perpendiculaire) depuis la centaine de micromètres jusqu'à plusieurs dizaines de mètres. En complément, l'analyse de la rugosité des ruptures de surface de huit tremblements de terre continentaux majeurs montre qu'un unique régime auto-affine anisotropique et sans longueur caractéristique est maintenu jusqu'à l'épaisseur de la croute sismogénique. Cette description de la géométrie des surfaces de failles et des traces de ruptures, est indépendante du contexte géologique. Plus particulièrement, cette étude met en avant que dès lors qu'un glissement cumulé métrique est atteint sur une faille, la complexité géométrique des portions actives des zones de failles est maintenue quel que soit le déplacement supplémentaire accommodé. Finalement, motivé par des observations de terrain, il est proposé que le processus dominant à l'origine de la rugosité des surfaces de failles puisse être l'interaction mécanique et la coalescence de segments multi-échelles. Deux conséquences émergent de cet état de rugosité. Les distributions spatiales du champ de glissement d'une part et du champ des contraintes lors d'un tremblement de terre d'autre part peuvent être expliquées par la présence de deux interfaces rugueuses auto-affines pressées élastiquement et cisaillées. Notamment, en utilisant un modèle numérique de propagation d'une rupture sur une interface hétérogène, la corrélation entre la rugosité 3-D des failles et la distribution spatiale 2-D du glissement dans le plan est clarifiée. Il est proposé que les hétérogénéités spatiales du glissement visibles sur les modèles cinématiques de rupture sismique soient préférentiellement dominées par les complexités géométriques locales plutôt que par la dynamique du front de rupture lui-même. Par ailleurs, les propriétés auto-affines des lèvres de la faille impliquent que les fluctuations spatiales de la chute de contrainte lors d'un séisme augmentent vers les courtes longueurs d'ondes ; ce qui est confirmé par des observations sismologiques. En considérant un modèle de rupture en cascade, il est alors probable que les failles sont fortement inhomogènes, avec des grands tremblements de terre composés d'une somme de petites aspérités multi-échelles qui subissent de fortes chutes de contrainte. Cette étude met en lumière l'importance des hétérogénéités locales en contrainte et en glissement dans la mécanique des tremblements de terre, et propose de les relier à des propriétés morphologiques self-affines de la surface de faille. / Geometrical asperities on fault planes partially control all stages of earthquake genesis, from the nucleation of a rupture, to its arrest. The present study aims at characterizing the geometrical morphology of fault surfaces on the wide range of spatial length scales involved in earthquakes, and exploring its influence on the spatial organization of slip and stresses during an earthquake. The approach combines field observations, numerical analysis and theory. Using recent methods of high resolution topographic measurements (LiDAR, laser profilometer, white light interferometer), spanning complementary ranges of spatial length scales, a consistent geometrical model emerges for the five fault zones (French Alps, Apennines, Turkey, California, Nevada) studied here. The morphology of the fault surface, i.e. its roughness, is scale dependent, and more specifically follows a self-affine anisotropic regime (the roughness exponent is Hpara = 0.6 in the slip direction and Hperp = 0.8 perpendicular to it) from the scale of hundred of micrometers to several tens of meters. In addition, the roughness analysis of the surface rupture of height major continental earthquakes shows that a single self-affine regime is maintained up to the thickness of the seismogenic crust, without any characteristic length scale. This description of the geometry of the fault scarps and rupture traces is independent of the geological context. More particularly, this study highlights that once a fault has achieved a cumulated a small offset no larger than one meter, the roughness of the active portion of the fault zone is maintained even if further slip is accommodated. Finally, motivated by field observations, it is proposed that the main process causing the roughness of fault surfaces can be the mechanical interaction and coalescence of multi-scale segments. Based on a numerical and theoretical approach, the spatial distribution of both the slip and stress fields during an earthquake can be understood by the presence of two self-affine rough interfaces elastically squeezed and sheared. Using a numerical model of rupture propagation on a heterogeneous interface, the link between the 3-D fault roughness and the 2-D spatial distribution of the slip is clarified. It is proposed that the spatial heterogeneity of the slip observed on kinematic models of earthquake rupture is preferentially dominated by the local geometrical complexity rather than the dynamic of rupture itself. Moreover, the self-affine properties of the fault interfaces imply that the spatial fluctuations of the stress drop after a rupture event increase towards shorter wavelengths. Considering a rupture cascade model, it is likely that the faults may be considered as highly inhomogeneous with large earthquakes composed by a sum of multi-scales ruptures of small asperities with large stress drop within an average fault surface with small stress drop. This study emphasizes the importance of local stress and slip heterogeneities on the mechanics of earthquakes and proposes to relate these parameters to the self-affine morphology of the fault surfaces.
174

Seismotectonic models, earthquake recurrence and maximum possible earthquake magnitudes for South Africa

Bejaichund, Mayshree 31 March 2011 (has links)
No description available.
175

Survey of Surface Fault Rupture and Structure Interation

Redmond, Lucy 01 October 2012 (has links)
This report aims to raise awareness of the hazards of surface fault rupture and to identify parameters that influence structural performance during earthquake fault rupture. In researching structures subject to surface rupture, both damaged and sound, guidelines and procedures to evaluate buildings in potential hazard areas are developed herein. Little to no guidance on how to design for surface fault offset exists in current codes and design guides. Thus it is important create tools for designers to appropriately analyze structures by developing guidance and requirements to aid designers in their strength assessment of a structure subject to this particular hazard. Case studies of structures damaged by fault rupture, detailed in Section 4.0, provide important clues as to how structures respond when subject to surface offset. These case studies highlight structures that have been tested under the imposed deformations of the ground, providing insight into how building layout and construction techniques can protect the structure, even under extreme offsets. A sample evaluation for Bowles Hall (UC Berkeley) is provided herein in addition to preliminary code equations that may be used to verify and determine a structure’s resistance to surface rupture.
176

Nonlinear seismic response of wall-frame structures

Petalas, Nicholas. January 1979 (has links)
No description available.
177

Integrated modelling of structure-foundation systems

Wotherspoon, Liam M. January 2009 (has links)
A problem endemic in the development of the built environment is poor communication between structural and geotechnical specialists. Through better communication and considering the structure and foundation as an integrated system, new opportunities may arise for achieving superior performance. This thesis investigates the seismic performance of the integrated system through the development of integrated structure-foundation models using the Ruaumoko structural analysis program. A detailed representation of the structural and foundation systems was created using Ruaumoko, providing insight into the response of a range of integrated structure-foundation systems during seismic loading. In developing both shallow and deep foundation models, some modifications were made to Ruaumoko elements in order to improve the foundation model, but generally existing element configurations were used to represent foundations. Multiple structural and foundation designs were developed using a range of approaches. Use of a range of shallow foundation design methods identified the significant impact that moment loading had on foundation performance. Partial uplift of footings was identified as detrimental to footing performance as it shifted the rotational axes, increasing moment loads and reducing effective footing area. Pinned connections between the structure and shallow footings eliminated these effects at the expense of significant redistribution of actions in the structure and increased displacements. Variation of soil conditions showed that softer soil was most likely to reduce demands on the structure at the expense of foundation non-linearity. Reduced stiffness and increased radiation damping characteristics of raft foundations compared to footing foundation systems reduced the demands on three storey structures for all soil conditions. Increased structural demands were identified for the ten storey structure as a result of the reduced impact of foundation characteristics on the response of the integrated system. The level of rotational restraint at the head of pile foundations had a considerable effect on the structure and the foundation, with free-head piles developing the largest pile displacements and actions. Reduced rotational stiffness caused a substantial change in the distribution of structural actions, while increasing rotational restraint moved the characteristics closer to the response of fixed base models. Softer soil conditions greatly increased non-linearity in the foundation soil without any definitive improvement in structural performance.
178

Near fault (near field) ground motion effects on reinforced concrete bridge columns /

Phan, Vu T. January 2005 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2005. / "August, 2005." Includes bibliographical references (leaves 76-78). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2005]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
179

Steel confined yielding damper for earthquake resistant design

Newell, James D. 22 April 2003 (has links)
An experimental study of a passive energy dissipation tension-compression yielding brace or buckling restrained brace has been conducted. The Confined Yielding Damper (CYD) consists of a steel yielding core confined within a tube filled with non-cohesive media. The external tube and confined non-cohesive media provide lateral stability to the core enabling the device to yield in compression as well as tension. This device is similar to the Unbonded Brace developed by Nippon Steel of Japan. Fourteen full-scale CYDs were tested to determine the effect of varied confining media, perforation blocking configuration, and a random displacement history. Based on the Confined Yielding Dampers tested relatively stable and symmetric hysteretic damping can be achieved with the CYD device. / Graduation date: 2003
180

The seismic vulnerability of sheet pile walls

McCullough, Nason J. 23 February 1998 (has links)
The seismic performance of port structures has been well documented following recent earthquakes, and indicates that port structures are highly susceptible to earthquake-induced damages. These damages are primarily due to soil liquefaction and the associated ground failures. Sheet pile bulkheads provide vital intermodal and lifeline transportation links between water-side and land-side traffic, and are waterfront structures particularly vulnerable to liquefaction-induced damages. Due to the prevalence of liquefaction-induced damages, many ports are utilizing soil improvement techniques to mitigate these hazards. Many port authorities have proposed utilizing performance-based design criteria to limit potential earthquake-induced damages. The current design method for sheet pile walls (Mononobe-Okabe) is based on simple, limit equilibrium analysis techniques, which are poorly suited for performance-based design. Recent advancements in the seismic design of sheet pile walls have addressed some of the limitations of the current design methods, but are still inadequate for performing a complete, performance-based design for locations that contain potentially liquefiable soils and/or where soil improvement strategies have been instituted. This study has focused on conducting an empirical investigation and numerical modeling to determine the seismic performance of sheet pile walls, and the performancebased benefit of soil improvement through densification. A case history validated, nonlinear effective stress computer program was used to perform numerical parametric studies on various design parameters (earthquake properties, depth of sheet pile embedment, sheet pile wall stiffness, tie rod length, density of the backfill, and extent of soil densification). The results have been presented as a performance-based design method, and include a design chart that provides practitioners with a preliminary design tool that may be used to estimate the seismic deformations of sheet pile walls with or without soil improvement. The study has demonstrated that soil densification can greatly reduce the seismicallyinduced deformations, especially when the magnitude of soil improvement extends beyond the location of the anchor. The study has also demonstrated that the use of soil densification techniques for mitigating seismic hazards may not be adequate in limiting deformations to allowable limits, and that other methods of soil improvement (cementation, drainage, etc.) or structural improvements may also be required. / Graduation date: 1998

Page generated in 0.0359 seconds