• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 719
  • 78
  • 21
  • 17
  • 16
  • 13
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • Tagged with
  • 1201
  • 372
  • 236
  • 225
  • 216
  • 189
  • 182
  • 148
  • 145
  • 121
  • 121
  • 119
  • 82
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Reversed Cyclic Load Tests of Reinforced Concrete Frame Subassemblages

Rattray, Suzanne 05 1900 (has links)
No description available.
282

Evolution of earthquake triggered landslides in the Kashmir Himalaya, NW Pakistan

Khattak, Ghazanfar A. January 2009 (has links)
No description available.
283

Energy-Based Evaluation and Remediation of Liquefiable Soils

Green, Russell A. 14 August 2001 (has links)
Remedial ground densification is commonly used to reduce the liquefaction susceptibility of loose, saturated sand deposits, wherein controlled liquefaction is typically induced as the first step in the densification process. Assuming that the extent of induced liquefaction is approximately equal to the extent of ground densification, the purpose of this research is to assess the feasibility of using earthquake liquefaction data in remedial ground densification design via energy-based concepts. The energy dissipated by frictional mechanisms during the relative movement of sand grains is hypothesized to be directly related to the ability of a soil to resist liquefaction (i.e., Capacity). This hypothesis is supported by energy-based pore pressure generation models, which functionally relate dissipated energy to residual excess pore pressures. Assuming a linearized hysteretic model, a "simplified" expression is derived for computing the energy dissipated in the soil during an earthquake (i.e., Demand). Using this expression, the cumulative energy dissipated per unit volume of soil and normalized by the initial mean effective confining stress (i.e., normalized energy demand: NED) is calculated for 126 earthquake case histories for which the occurrence or non-occurrence of liquefaction is known. By plotting the computed NED values as a function of their corresponding SPT penetration resistance, a correlation between the normalized energy capacity of the soil (NEC) and SPT penetration resistance is established by the boundary giving a reasonable separation of the liquefaction / no liquefaction data points. NEC is the cumulative energy dissipated per unit volume of soil up to initial liquefaction, normalized by the initial mean effective confining stress, and the NEC correlation with SPT penetration resistance is referred to as the Capacity curve. Because the motions induced during earthquake shaking and remedial ground densification significantly differ in amplitude, duration, and frequency content, the dependency of the derived Capacity curve on the nature of the loading needs to be established. Towards this end, the calibration parameters for energy-based pore pressure generation models are examined for their dependence on the amplitude of the applied loading. The premise being that if the relationship between dissipated energy and pore pressure generation is independent of the amplitude of loading, then the energy required to generate excess pore pressures equal to the initial effective confining stress should also be independent of the load amplitude. However, no conclusive statement could be made from results of this review. Next, first order numerical models are developed for computing the spatial distribution of the energy dissipated in the soil during treatment using the vibratory probe method, deep dynamic compaction, and explosive compaction. In conjunction with the earthquake-derived Capacity curves, the models are used to predict the spatial extent of induced liquefaction during soil treatment and compared with the predicted spatial extent of improvement using empirical expressions and guidelines. Although the proposed numerical models require further validation, the predicted extent of liquefaction and improvement are in very good agreement, thus giving credence to the feasibility of using the Capacity curve for remedial ground densification design. Although further work is required to develop energy-based remedial densification design procedures, the potential benefits of such procedures are as follows. By using the Capacity curve, the minimum dissipated energy required for successful treatment of the soil can be determined. Because there are physical limits on the magnitude of the energy that can be imparted by a given technique, such an approach may lead to improved feasibility assessments and initial designs of the densification programs. / Ph. D.
284

Moving Towards an Improved Liquefaction Hazard Framework: Lessons Resulting From the 2010-2011 Canterbury, New Zealand, Earthquake Sequence

Maurer, Brett 24 October 2016 (has links)
The 2010-2011 Canterbury, New Zealand, Earthquake Sequence (CES) resulted in a liquefaction dataset of unprecedented size and quality, presenting a truly unique opportunity to assess and improve the efficacy of liquefaction-analytics in the field. Towards this end, the study presented herein develops and analyzes a database of 10,000 high-quality liquefaction case histories resulting from the CES. The objectives of these analyses are varied, but underlying each is the desire to more accurately assess liquefaction hazard for civil infrastructure (i.e., to predict both the occurrence and damage-potential of soil liquefaction). Major contributions from this work include, but are not limited to: (1) the Liquefaction Potential Index (LPI), the state-of-practice framework for assessing liquefaction hazard, is shown to produce erroneous predictions for a significant percentage of the assessed case histories; (2) the cause of poor predictions is rigorously investigated and specific shortcomings of the LPI framework are identified; (3) based on the limitations identified, and using insights from historical data, a revised liquefaction hazard framework is developed; and (4) the revised framework is shown to assess liquefaction hazard more efficiently relative to both LPI and a competing alternative framework newly proposed in the literature. Ultimately, significant room for improvement remains with respect to accurate assessment of liquefaction hazard. The findings presented in this dissertation thus form the basis for future development of a further-improved framework. Moreover, a methodology is proposed by which improvements can be measured in a standardized and objective manner. / Ph. D.
285

Expanded Byrne Model for Evaluating Seismic Compression

Jiang, Yusheng 18 September 2019 (has links)
The Byrne (1991) model was developed to predict excess pore water pressure for saturated sands under cyclic loading. However, the model can also be used to predict seismic compression in dry or partially saturated clean sands, which is the focus of this research. The original Byrne (1991) model has two primary limitations. One limitation is that calibration coefficients for the model have only been developed for clean sand, while seismic compression is a concern for a variety of soil types in engineering practice. Another limitation is that the existing calibration coefficients are solely correlated with soil relative density. This is in contrast to findings from studies performed over the last two decades that show various environmental and compositional factors, in addition to relative density, influence seismic compression behavior. To overcome these shortcomings and others the model was transformed to allow it to be implemented in "simplified" and "non-simplified" manners and systematic model calibration procedures were developed by means of MATLAB code. Both "simplified" and "non-simplified" variants of the model are used to analyze a site in Japan impacted by the 2007, Mw6.6 Niigata-ken Chuetsu-oki earthquake. The results from the analyses are in general accord with the post-earthquake field observations and highlight the utility and versatility of the models. / Master of Science / Earthquake shaking can cause compression of volume in soil, which may induce damage to various infrastructures. This phenomenon is known as seismic compression. Byrne (1991) proposed one model that can be used to evaluate the magnitude of seismic compression. However, this model has two significant limitations. One limitation is its coefficient expression is suitable for merely one soil type, while seismic compression is a concern for a variety of soil types in engineering practice. Another limitation is that the existing model coefficients are only correlated with soil density. This is in contrast to findings from research conducted over the last two decades that show many other environmental and compositional factors, in addition to soil density, affect the magnitude of seismic compression. To overcome these shortcomings and others the model was modified and calibrated, where mathematical transformations were performed for the model to allow it to be implemented in “simplified” and “non-simplified” calculation manners. Also, systematic model modification procedures were established by means of codes written by one software called MATLAB. Both the “simplified” and “nonsimplified” calculation methods of the model were used to analyze a site in Japan impacted by an earthquake occurred in 2007, named Niigata-ken Chuetsu-oki Earthquake. The results from the analyses are in general accord with the records obtained after the earthquake and highlight the utility and versatility of the modified models.
286

The influence of cementation on liquefaction resistance of sands

Iwabuchi, Jotaro January 1986 (has links)
Cohesionless sands are known to be susceptible to failure by liquefaction when they are saturated and subjected to earthquake shaking. Considerable study has been directed towards this subject over the past 20 years in recognition of the possibility of large-scale property damage or loss of life due to this type of failure. Recent evidence has shown that small degrees of cementation in a sand significantly reduce the likelihood of liquefication. However, the work to date has been limited to studies with conventional testing devices and simple loading paths. These devices are suspected of inducing premature failure in cemented soils, and are not capable of modeling the effects of multiaxial loading. In this investigation, there were two major objectives. The first involved the development and fabrication of a new three~dimensional shear device with the capability of applying load to cemented sands with a minimum of stress concentration effects, and of using load paths which are more representative of the true effects of an earthquake than is possible in conventional equipment. The second concerned performance of a series of production tests to investigate the behavior of cemented sands under a range of earthquake loading paths. The production tests were largely performed using the new three—dimensional shear device. The test results showed that cemented soils have more resistance to earthquake loading than previously thought since stress concentration effects in conventional testing do induce premature failure through the effects of stress concentrations. On the other hand, it was found that either cemented or uncemented sands show less resistance to earthquake loadings if multiaxial stress conditions are applied to the sample as opposed to uniaxial loadings. This is important in explaining the fact that sites with seemingly similar conditions often show different behavior, since slightly different earthquake loading pattems can cause different responses. One factor explaining differences in response is found to be the mean normal stress, which is not the same for all loadings, and plays an important role in the pore pressures developed in the soil. / Ph. D. / incomplete_metadata
287

Effects of earthquakes on partially-filled water tanks

Koyama, Junji 23 June 2009 (has links)
This thesis is concerned with the effects of earthquakes on partially-filled water tanks. The analysis is applicable to rectangular water tanks, which have received little attention to date. The analysis is relatively involved and includes the derivation of the equations of motion for the vibration of the whole of tank by means of substructure synthesis, a stochastic analysis relating the random ground motion caused by earthquakes to the random vibration of the tank, a stochastic characterization of the fluid pressure and computation of the probability of failure of the tank. / Master of Science
288

Enhanced Nonlinear Truss Model for Capturing Combined Earthquake and Fire Effects in RC Structures

Allen, Amy Melissa 21 June 2015 (has links)
Post-earthquake fires can negatively affect the safety and collapse probability of Reinforced Concrete (RC) structures. At present, there has been no systematic effort to assess the performance of RC structures for combined earthquake and fire effects. Developing appropriate guidelines for this scenario requires simulation tools that can accurately capture material behavior during cyclic loading and at elevated temperatures. Ideally, simulation tools must also be conceptually simple and computationally efficient to allow extensive parametric analyses. The goal of the present study is to enhance a previously established modeling approach so that it can describe the performance of RC structures for both cyclic loading and changes in material behavior due to elevated temperatures. The modeling approach is based on the nonlinear truss analogy and has been extensively validated for cyclic loading of RC shear walls and columns. The constitutive models for concrete and reinforcing steel are enhanced with the capability to account for the effect of elevated temperatures. The enhanced material models are validated using experimental data for concrete and steel at elevated temperatures. The capability of the proposed model to analyze structural-level behavior is verified and compared with experimental testing. The method is also endowed with the capability to describe the time-dependent heat conduction in a fire simulation. The use of the enhanced nonlinear truss model is more advantageous than refined finite element models because of its computational efficiency and conceptual simplicity. / Master of Science
289

Source studies over a wide range in earthquake magnitude

Taylor, David W. January 1988 (has links)
The concept of similarity (that earthquake source parameters obey scaling relations) and the empirical linear relation between magnitude and the log₁₀ of the number of events (the Gutenberg-Richter relation) describe well the behavior and recurrence of many earthquake data sets. The universality of these relations are tested herein using a suite of earthquakes from the southeast comer of Hokkaido Island, Japan. Within this active seismic region, over 11,100 events ranging in magnitude from 0 to 7.1 were cataloged by the Hokkaido University network in the period 1976-1986 with epicentral distances of less than 50 km from the Carnegie broadband station KMU. Two subsets of the events are examined herein: crustal earthquakes, those with locations shallower than 45 km and above the top of the subducting Pacific plate, and subduction earthquakes, those with locations below 60 km within the subducting plate. The frequency of occurrence versus magnitude relations for both the crustal and subduction events are nonlinear with a definite decrease in the number of detected events for lower magnitudes, but the subduction events have proportionally more large earthquakes and fewer small earthquakes than the crustal data suite. A completeness analysis indicates that the catalogs are complete to less than magnitude 2, which is clearly in the nonlinear region, suggesting that the observed curvature of the frequency-magnitude curves is not due to incompleteness of the catalogs. Hence, a single, linear Gutenberg-Richter relation is inadequate for describing the frequency of occurrence of these events. The ratio of the frequency-magnitude curves gives a remarkably linear relation from magnitude 1 to magnitude 5, indicating that in terms of fitting these frequency-magnitude curves to higher order polynomials, the crustal and subduction data sets have identical higher order coefficients, and their curvature difference is caused by only the constant and linear coefficients. A possible cause for the difference in the recurrence relations is the increased lithostatic load with depth. In an attempt to gain insight into the frequency of occurrence characteristics of the data, the seismic energy release of the crustal and subduction regions was calculated as a function of time. Evaluation of the energy release versus time indicates that there was a precursory energy decrease prior to the m<sub>L</sub> = 7.1 event in 1982. Analysis of energy release appears to be a potentially useful and relatively objective technique for studying precursory quiescence. Using data from the Carnegie broadband station KMU, seismic source scaling relations were derived for 21 crustal and 24 subduction events. Using Q-corrected SV and SH amplitude spectra and assuming an average focal mechanism, spectral parameters (zero frequency level and comer frequency) were estimated using the objective technique of Snoke (1987). Cepstral filtering was employed both to remove the effect of multiple arrivals, as well as to increase the objectivity with which parameters were determined. The resulting moment versus magnitude relations indicate a significant change in slope around magnitude 3.5 and moment 2 x 10²⁰ dyne-cm. Brune radii average 0.3 km over the range 10¹⁸ to 10²¹ dyne-cm, and increase from 0.6 to 2 km over the range 10²² to 10²⁵ dyne-cm. Log Brune stress drop was found to be linearly correlated with log moment with a slope of approximately unity below 10²¹ dyne-cm, and highly correlated but with a slightly smaller slope above that point. For lower moments, stress drops increase with moment from 0.035 bar to 10 bar, and for higher moments, stress drops range from 10-822 bar, with most values near 100 bar. These variations of radius and stress drop with moment for moments below 10²¹ dyne-cm is inconsistent with the similarity hypothesis. Stress drop versus moment relations were compared with those from a study for the Matsushiro region, Japan, which is characterized by a shallow, localized crustal seismicity. No significant difference is found between the scaling relations for the crustal earthquakes, subduction earthquakes, and Matsushiro earthquakes taken separately, even though the tectonic stress is expected to be quite different in the three regions. We conclude that the calculated scaling relations are not directly determined by the tectonic stress. / Ph. D.
290

Diatom-based reconstructions of earthquake-induced paleoenvironmental change in coastal Alaska and Washington, USA

DePaolis, Jessica 30 January 2024 (has links)
Great (Mw >8.5) earthquakes occur over long temporal intervals that extend beyond current historical (written and oral) records along most subduction zone coastlines often leading to the underestimation of magnitude, recurrence, and spatial extent of these events. Paleoseismic studies target low energy depositional environments that record primary and secondary evidence of earthquake occurrence within the coastal stratigraphy over much longer temporal scale, thus improving our understanding of the behavior of subduction zone earthquakes. Diatoms preserved within coastal stratigraphic records are sensitive to earthquake-induced environmental change and are useful bioindicators in paloesiesmology studies. The two studies in this dissertation employ diatoms to create novel approaches to investigate behavior and recurrence of earthquakes along two subductions zones: Alaska-Aleutian subduction zone and the Cascadia subduction zone. In these chapters we use diatoms to explore 1) the potential for combined slip along the Patton Bay splay fault system and the eastern Alaska-Aleutian subduction zone within Prince William Sound, Alaska, and 2) lacustrine turbidite source mechanisms in Ozette Lake, Washington to potentially improve the spatial and temporal earthquake record for the northern Cascadia subduction zone. This work has implications for improving our earthquake chronologies along subduction zone coastlines and making important contributions to coastal hazards assessments. / Doctor of Philosophy / Subduction zones are capable of producing great (>Mw 8.5) earthquakes with accompanying tsunamis that can impact nearby coastlines with devastating force. Great earthquakes occur over long timescales (thousands of years) and are often not captured in short historical records, leaving questions about the recurrence, behavior, and range of potential future earthquakes along these boundaries. Paleoseismology, the study of earthquake history, employs methods that use the earthquake-induced environmental changes along subduction zone coastlines to provide long-term records of earthquake occurrence. Diatoms, a type of siliceous microalgae entrained in coastal sediments, react to changes in pH, salinity, water depth, and sediment type, and are important indicators of environmental change that can be used to expand our understanding of earthquake behavior. This dissertation uses diatoms in two projects that explore the earthquake history along the Alaska-Aleutian subduction zone and the Cascadia subduction zone. First, we determine that secondary faults, called splay faults, in Prince William Sound are likely triggered only by slip along the Alaska-Aleutian subduction zone, suggesting that combined slip has occurred during four of the eight total megathrust earthquakes in the last ~4,200 years. Second, we investigate the sediment origins of the youngest six deposits (turbidites) in Ozette Lake, linking them to diatoms located on the subaqueous delta and shallow lake surfaces, leading us to infer the source is likely earthquake-induced slope failure. Both projects help to expand our understanding of subduction zone earthquake behavior, and will help inform future hazards assessments for coastal communities.

Page generated in 0.0518 seconds