Spelling suggestions: "subject:"concrete composite teams"" "subject:"inconcrete composite teams""
1 |
Machine learning predictions for bending capacity of ECC-concrete composite beams hybrid reinforced with steel and FRP barsGe, W., Zhang, F, Wang, Y., Ashour, Ashraf, Luo, L., Qiu, L., Fu, S., Cao, D. 31 August 2024 (has links)
Yes / This paper explores the development of the most suitable machine learning models for predicting the bending capacity of steel and FRP (Fiber Reinforced Ploymer) bars hybrid reinforced ECC (Engineered Cementitious Composites)-concrete composite beams. Five different machine learning models, namely Support Vector Regression (SVR), Extreme Gradient Boosting (XGBoost), Multilayer Perceptron (MLP), Random Forest (RF), and Extremely Randomized Trees (ERT), were employed. To train and evaluate these predictive models, the study utilized a database comprising 150 experimental data points from the literature on steel and FRP bars hybrid reinforced ECC-concrete composite beams. Additionally, Shapley Additive Explanations (SHAP) analysis was employed to assess the impact of input features on the prediction outcomes. Furthermore, based on the optimal model identified in the research, a graphical user interface (GUI) was designed to facilitate the analysis of the bending capacity of hybrid reinforced ECC-concrete composite beams in practical applications. The results indicate that the XGBoost algorithm exhibits high accuracy in predicting bending capacity, demonstrating the lowest root mean square error, mean absolute error, and mean absolute percentage error, as well as the highest coefficient of determination on the testing dataset among all models. SHAP analysis indicates that the equivalent reinforcement ratio, design strength of FRP bars, and height of beam cross-section are significant feature parameters, while the influence of the compressive strength of concrete is minimal. The predictive models and graphical user interface (GUI) developed can offer engineers and researchers with a reliable predictive method for the bending capacity of steel and FRP bars hybrid reinforced ECC-concrete composite beams.
|
Page generated in 0.0641 seconds