• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 14
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of Noncovalent Interactions in Complex Systems Using Effective Fragment Potential Method

Pradeep Gurunathan (5929724) 16 January 2019 (has links)
<div>Computational Chemistry has proven to be an effective means of solving chemical problems. The two main tools of Computational Chemistry - quantum mechanics and molecular mechanics, have provided viable avenues to probe such chemical problems at an electronic or molecular level, with varying levels of accuracy and speed. In this work, attempts have been made to combine the speed of molecular mechanics and the accuracy of quantum mechanics to work across multiples scales of time and length, effectively resulting in simulations of large chemical systems without compromising the accuracy.</div><div><br></div><div>The primary tool utilized for methods development and application in this work is the Effective Fragment Potential (EFP) method. The EFP method is a computational technique for studying non-covalent interactions in complex systems. EFP is an accurate \textit{ab initio} force field, with accuracy comparable to many Density Functional Theory (DFT) methods, at significantly lower computational cost. EFP decomposes intermolecular interactions into contributions from four terms: electrostatics, polarization, exchange-repulsion and dispersion.</div><div><br></div><div>In the first chapter, the possibility of applying EFP method to study large radical-water clusters is probed. An approximate theoretical model in which the transition dipole moments of excitations are computed using the information from the ground state orbitals is implemented.</div><div><br></div><div>A major challenge to broaden the scope of EFP is to overcome its limitation in describing only small and rigid molecules such as water, acetone, etc. In the second chapter, the extension of EFP method to large covalently bound biomolecules and polymers such as proteins, lipids etc., is described. Using this new method, referred to as BioEFP/mEFP, it is shown that the effect of polarization is non-negligible and must be accounted for when modeling photochemical and electron-transfer processes in photoactive proteins.</div><div><br></div><div>Another area of interest is the development of novel drug-target binding models, in which a chemically active part of the ligand is modified via functional group modification, while the rest of the system remains intact. In the third chapter, the development and application of a drug-target binding model is explained.<br></div><div><br></div><div><div>Lastly, in the fourth and final chapter, we show the derivation for working equations corresponding to the coupling gradient term describing the dispersion interactions between quantum mechanical and effective fragment potential regions.</div><div><br></div><div>The primary focus of this work is to explore and expand the boundaries of multiscale QM/MM simulations applied to chemical and biomolecular systems. We believe that the work described here leads to exciting pathways in the future in terms of modeling novel systems and processes such as heterogeneous catalysis, QSAR, crystal structure prediction, etc.</div></div>
12

Exploring the Experiences of Adults After Equine Facilitated Psychotherapy (EFP)

Torbett, Deby Kay 01 January 2017 (has links)
The aim of this phenomenological qualitative study was to capture and understand the essence of the lived experiences of individuals after participating in equine facilitated psychotherapy (EFP). In that the experiences of participants after exposure to EFP have not previously been examined, this study adds to the literature on this innovative therapy. Theoretical viewpoints on animal assisted therapy and solution-focused brief therapy (SFBT) were explored, as well as how the SFBT methodology compares to techniques used in EFP. Using interviews, the study involved capturing participants' experiences by collecting their descriptions of their involvement with EFP, identifying the specific experiences they noted, ascertaining what the participants did with these experiences, and discerning themes or patterns in the interview data. A purposive sample of 10 adults who had participated in EFP participated in interviews, the data from which were analyzed by hand coding. Analysis showed improved quality of life with improvements in overall well-being and in participants' relationships. The findings of this research study may lead to additional research in this area and may promote the establishment of consistent techniques in EFP, proper credentialing of those who use EFP, and applicable regulatory standards. By exploring the lived experiences of individuals who have participated in EFP, providers may be able to delve more deeply into the curative factors that may be at work with this type of therapy.
13

Microarray Analysis of Differential Expression of Genes in Shoot Apex and Young Leaf of English Ivy (<i>Hedera helix</i> L. cv. Goldheart)

Shin, Seung-Geuk 15 July 2010 (has links)
No description available.
14

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF HYDROPHOBIC ASSOCIATION AND ION AFFINITY FOR MOLECULAR OIL/WATER INTERFACES

Andres Urbina (12464403) 27 April 2022 (has links)
<p>  </p> <p>Experimental and computational techniques are used to study physico-chemical phenomena occurring in water on which hydrophobic interactions play a role. In particular, hydrophobic self-aggregation, including host-guest binding, and the affinity of ions to oil/water interfaces are investigated. Raman multivariate curve resolution (Raman-MCR) spectroscopy was the experimental technique used to unveil intermolecular interactions through the analysis of solute-correlated (SC) vibrational spectra. Molecular simulations, including molecular dynamics (MD) simulations, quantum-mechanical calculations, or a combination of both, were carried out to assist with the molecular-level interpretation of the experimental SC spectra.</p>

Page generated in 0.0166 seconds