• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of epidermal growth factor receptor in feline oral squamous cell carcinoma

Bergkvist, Gurå Therese January 2011 (has links)
Feline oral squamous cell carcinomas (FOSCCs) are locally aggressive tumours and a common cause of mortality and morbidity. Current treatment options are rarely successful and animals are frequently euthanised upon diagnosis due to their grave prognosis. Epidermal Growth Factor Receptor (EGFR) is a tyrosine kinase receptor which is frequently dysregulated in SCC of the head and neck (HNSCC) in man. Recent advances in human medicine have identified EGFR as a therapeutic target in HNSCC. In this study the role of EGFR in FOSCC was investigated. Sixty seven biopsy samples were immunohistochemically labelled for EGFR and Ki67, a proliferation marker. The tyrosine kinase region of feline EGFR was cloned and sequenced, and six small interfering RNAs (siRNAs) targeting the tyrosine kinase region were developed. The most effective siRNA as well as an EGFR specific tyrosine kinase inhibitor, gefitinib, was then used on a feline SCC cell line (SCCF1), and the effect of EGFR targeting alone, or in combination with irradiation, on the cell line was determined. The majority of the biopsy samples were labelled positively for EGFR and Ki67, and high proliferation corresponded with poor prognosis. The siRNA caused reduction in EGFR mRNA by Real-Time Polymerase Chain Reaction and protein levels as assessed by western blot analysis. Reduced cell proliferation and migration were also observed by proliferation assays and scratch assays respectively. Combining EGFR knockdown with irradiation caused an additive effect on the ability of the cell line to form colonies. These results support the role of EGFR as a potential therapeutic target in FOSCCs.
2

Towards Novel Effective Combination Therapy for KRAS Mutant Non-Small Cell Lung Cancer

Kurim, Sara 12 April 2018 (has links)
Non-small-cell lung cancer (NSCLC) accounts for 80–85% of all lung cancers and is associated with significant mortality. As epidermal-growth-factor receptor (EGFR) is over-expressed in 80-90% of NSCLC, its inhibition via EGFR-Tyrosine Kinase inhibitors (EGFR-TKIs) is a main therapeutic strategy. However, patients with mutations in KRAS are resistant to EGFR-TKIs. A study in mutant KRAS-driven lung cancer in transgenic mice showed that tumor growth was dependent on the activity of focal adhesion kinase (FAK). Therefore, we hypothesized that KRAS-mutant NSCLC will be sensitive to FAK-TKIs and, given known FAK-EGFR cross-talk, FAK inhibition will sensitize KRAS-mutant NSCLC to EGFR-TKIs. We performed cell viability assays of WT versus mutant KRAS NSCLC cell lines following treatment with FAK-TKI alone or in combination with a clinically relevant EGFR-TKI. We found that KRAS-mutant cells were more sensitive to FAK-TKI than KRAS-WT NSCLC. In addition, we found that the combination treatment including FAK and EGFR TKIs resulted in reduced tumor cell viability as compared to treatment with either drug alone. This enhanced anti-tumor response could be due to FAK-TKI’s ability to down-regulate EGFR downstream targets. Our preliminary data suggests that in KRAS-mutant cells the drug combination appears to more effectively inhibit Akt activity than single drug treatment alone. This suggests an enhanced ability to impair cell survival following treatment with the drug combination. We also found that treatment with FAK TKI in KRAS mutant NSCLC cells resulted in increased activation of EGFR which was due in part to modulation of EGFR recycling and production of endogenous EGFR ligands. Thus, the combination of FAK- and EGFR-TKIs may be more effective in KRAS mutant NSCLC as treatment with EGFR-TKI overcomes the unexpected ‘side effect’ of treatment with FAK-TKI, namely activation of the EGFR pathway by this drug. The findings of our study are novel and have uncovered previously unrecognized outcomes of FAK inhibition on EGFR activity. Moreover, our data support the notion that the combination of FAK- and EGFR-TKIs could be an effective treatment for KRAS mutant NSCLC patients.

Page generated in 0.0787 seconds