1 |
<strong>PRE-CHAMBER JET IGNITION IN AN OPTICALLY-ACCESSIBLE CONSTANT-VOLUME GASOLINE ENGINE</strong>Dong Eun Lee (16637403) 08 August 2023 (has links)
<p>In Chapter 2, an experiment has been developed to investigate the passive pre-chamber jet ignition process in gasoline engine configurations and low-load operating conditions. The apparatus adopted a modified 4-cylinder 2.0L gasoline engine to enable single-cylinder operation. To reduce the complexity, the piston position was fixed at a predefined position relative to the top dead center (TDC) to simulate thermodynamic conditions at ignition and injection timings. High-speed Infrared (IR) imaging was applied to visualize the jet penetration and ignition process inside the main cylinder and to investigate the cyclic spatial variability. Two passive pre-chambers with different total nozzle areas and numbers of nozzles were used. In addition, the pre-chamber volume and pressure at ignition timing were varied to examine their effect on jet ignition performance. Misfire behavior was observed in the main chamber of all test cases, and the results suggested that the main cause is a high Residual Mass Fraction (RMF) in the pre-chamber affecting the subsequent cycle. A larger total nozzle area, smaller volume, higher pressure, and fuel-lean operation tended to mitigate the misfire behavior. For a test case with a spark pressure of 6 bar, a reduced cyclic variability in terms of coefficient of variation peak cylinder pressure (COVPmax) from 10.03% to 7.38% and combustion phasing variation from 81 crank angle degree (CAD) to 12 CAD were observed with increasing pre-chamber volume-to-area (V/A) ratio from 59.37 m to 103.11 m, but slightly higher misfire frequency was observed, from 46.67% to 50.00%, suggesting an accurate combination of pre-chamber design parameters is needed to improve overall performance at low-load operation.</p>
<p>In Chapter 3, it examines the influence of passive pre-chamber nozzle diameter and dilution level on jet formation and engine performance. Utilizing a modified constant-volume gasoline direct injection engine with an optically-accessible piston, we tested three passive pre-chambers with nozzle diameters of 1.2, 1.4, and 1.6 mm, while nitrogen dilution varied from 0 to 20%. With the help of high-speed imaging, we captured pre-chamber jet formations and subsequent flame propagation within the main chamber. Our novel findings reveal that asymmetric temporal and spatial jet formation patterns arising from pre-chambers significantly impact engine performance. The larger nozzle diameter pre-chambers exhibited the least variation in jet formation due to their improved scavenging and main mixture filling processes, but had the slowest jet velocity and lowest jet penetration depth. At no dilution condition, the 1.2 mm-PC demonstrated superior performance attributed to higher pressure build-up in the pre-chamber, resulting in accelerated jet velocity and increased jet penetration depth. However, at high dilution condition, the 1.6 mm-PC performed better, highlighting the importance of scavenging and symmetry jet formation. This study emphasizes the importance of carefully selecting the pre-chamber nozzle diameter, based on the engine's operating conditions, to achieve an optimal and balanced configuration that can improve both jet formation and jet characteristics, as well as scavenging.</p>
<p>In Chapter 4, it investigates the influence of passive pre-chamber nozzle diameter on jet ignition and subsequent main chamber combustion under varying load conditions and dilution levels using a constant-volume optical gasoline direct injection engine. The results reveal that as the load decreases, both fuel availability and flow conditions deteriorate, leading to delayed and inferior jet characteristics that affect main chamber ignition and combustion processes. In high and medium load conditions without dilution, the smallest nozzle diameter pre-chamber (1.2mm-PC) shows improved jet ignition and main combustion due to earlier jet ejection, enhanced penetration, and intensified jet. This is facilitated by the smaller nozzle diameter enabling faster and higher pre-chamber pressurization. Conversely, under low load conditions, the largest nozzle diameter pre-chamber (1.6mm-PC) performs better, likely due to improved scavenging and reduced residual levels, resulting in less compromised pre-chamber combustion and subsequent jet characteristics. The nozzle diameter also has a significant impact on cycle-to-cycle variations, with smaller diameters enhancing jet ignition performance but increasing variability. The effect of external residuals (dilution) on jet ignition performance varies depending on the nozzle diameter, with the 1.6mm-PC exhibiting less degradation and demonstrating earlier jet ejection and CA50 timing compared to smaller nozzle diameter pre-chambers at higher dilution conditions. The improved scavenging and relatively lower residual levels in the larger nozzle diameter pre-chamber contribute to its increased resistance to dilution and potential extension of dilution tolerance.</p>
<p>In Chapter 5, it presents an analysis of the effects of pre-chamber nozzle orientation on dilution tolerance in a constant-volume optical engine. Using a combination of experimental and numerical methodologies, we provide novel insights into how variations in nozzle number, orientation, and size influence combustion performance under different dilution conditions. The findings reveal that an increase in the number of nozzles, for a fixed A/V ratio, tends to enhance ignition performance and stability across a range of dilution scenarios, primarily due to an increase in ignition points and a larger ignition surface area. Meanwhile, swirling pre-chambers, despite their potential to boost initial combustion performance at no dilution condition, may limit dilution tolerance due to the complexity of their internal flow dynamics and increased heat loss through nozzle surfaces. Furthermore, pre-chambers combining swirling and straight nozzle orientations fail to synergize the benefits of each type, and instead, exacerbate challenges such as heat loss, flame quenching, and unfavorable flow dynamics. These findings emphasize the complexity and nuanced trade-offs involved in optimizing pre-chamber design for improved dilution tolerance and suggest potential directions for future research in this area.</p>
<p>In Chapter 6, it investigates the behavior of pre-chamber knock in comparison to traditional spark ignition engine knock, using a modified constant-volume gasoline engine with an optically-accessible piston. The aim is to provide a deeper understanding of pre-chamber knock combustion and its potential for mitigating knock. Five passive pre-chambers with different nozzle diameters, volumes, and nozzle numbers were tested, and nitrogen dilution was varied from 0 to 10%. The stochastic nature of knock behavior necessitates the use of statistical methods, leading to the proposal of a high-frequency band-pass filter (37-43 kHz) as an alternative pre-chamber knock metric. Pre-chamber knock combustion was found to exhibit fewer strong knock cycles compared to SI engines, indicating its potential for mitigating knock intensity. High-speed images revealed pre-chamber knock primarily occurs near the liner, where end-gas knock is typically exhibited. The study identified that increasing pre-chamber nozzle diameter resulted in a larger dispersion of knock cycles and more severe knock intensity, likely due to shorter jet penetration depth requiring more time for end-gas consumption. Strategies for mitigating knock in pre-chamber combustion systems include reducing the pre-chamber volume for a fixed A/V ratio and increasing dilution level. The results of this study offer valuable insights for developing effective knock mitigation approaches in pre-chamber combustion systems, contributing to the advancement of more efficient and reliable engines.</p>
<p>In Chapter 7, a numerical investigation of different premixed gaseous injection strategies was performed to understand their impact on the scavenging and mixture formation of an air-fuel premixed pre-chamber with high exhaust gas recirculation (EGR) operations. EGR dilution is effective for reducing coolant heat loss, pumping work at throttled conditions, and mitigates knock at high-load conditions, thus increasing engine efficiency. To further extend the EGR limit of an air-fuel premixed pre-chamber engine, the effects of different injection strategies (including timing, duration, pressure, pre-chamber volume, and hardware) on the EGR level, trap efficiency, and parasitic loss were determined. Regardless of injection duration and upstream pressure, injecting too early not only increased the amount of the injected premixed gas leaking into the main chamber but also was inefficient in reducing the EGR level in the pre-chamber. To reduce the EGR level in the pre-chamber to a level where successful ignition and combustion of the pre-chamber mixture is possible, the injection timing should be delayed to be close to the ignition timing. A premixed air-fuel injection is thus proposed to reduce the time required for air-fuel mixing in the pre-chamber. With a delayed end of injection (EOI), both leakage amount and EGR level were reduced compared to the cases with earlier injection timings. The results show that an injection with 15 bar upstream pressure, 20 CA duration, EOI of −20 CAD aTDC (ignition timing), and with guided injection hardware for the base pre-chamber volume resulted in about 0.17% air compression parasitic loss, over a 94% trap efficiency, at the same time maintaining the mean EGR level in the pre-chamber below 20%, ensuring good pre-chamber combustion. With a 50% increase in pre-chamber volume from the base case, the parasitic loss increased by 65% (from 0.17% to 0.28% loss), indicating a problem with a larger pre-chamber with a separate air valve and injector.</p>
|
2 |
CFD Modelling and Analysis of the Passive Pre-Chamber Ignition Concept for Future Generation Spark-Ignition EnginesBarbery Avila, Ibrahim Ignacio 28 April 2023 (has links)
[ES] Desde la irrupción de los vehículos eléctricos en el mercado automotriz como una opción de transporte limpia y asequible, los fabricantes de motores han estado buscando nuevas formas de reducir la huella ambiental de los actuales motores de combustión interna alternativos (MCIA). Hoy en día, la mayoría de las investigaciones en aplicaciones de vehículos de pasajeros se centran en desarrollar aún más los motores de encendido provocado (MEP) para promover una nueva generación de sistemas de propulsión sostenibles y de alto rendimiento.
En este contexto, el concepto de encendido de precámara se está convirtiendo en una solución atractiva para aumentar la eficiencia térmica de los futuros MEP para vehículos de pasajeros, debido a su capacidad de acelerar el proceso de combustión. Además, la combinación de esta estrategia de encendido con mezclas diluidas (ya sea con aire o gases de escape) tiene el potencial de mejorar aún más el rendimiento del motor. En particular, en comparación con los sistemas de precámara activa con suministro de combustible auxiliar, la versión pasiva ofrece ventajas evidentes en términos de simplicidad mecánica, ensamblaje y coste. Sin embargo, todavía existen importantes obstáculos relacionados con la comprensión de los aspectos fisicoquímicos fundamentales del concepto (turbulencia, aerodinámica, conversión de energía, dinámica de los chorros, geometría de precámara...), que en última instancia han limitado la integración de esta tecnología en producción.
Por lo tanto, esta tesis doctoral pretende extender el nivel de conocimiento de este concepto de encendido mediante el uso de un modelo CFD de última generación, validado con un extenso conjunto de medidas experimentales y siguiendo una metodología especialmente desarrollada para este trabajo de investigación. Los resultados obtenidos se dividieron en tres partes:
La primera parte evaluó un MEP monocilíndrico de investigación, representativo de vehículos automóviles, que integraba el concepto de precámara pasiva en condiciones estequiométricas sin dilución. Aquí se evaluó el impacto del punto de operación del motor, el avance del encendido y la geometría de la precámara sobre los procesos físicos y termoquímicos que intervienen en este concepto de combustión.
La segunda parte del estudio se centró en caracterizar el concepto en condiciones diluidas con aire y recirculación de gases de escape (EGR). Se analizó en profundidad la evolución del proceso de combustión y la distribución de energía en la precámara y cámara principal para los límites de dilución experimentales. Además, también se evaluó el uso de hidrógeno para ampliar el límite de dilución con aire.
La última etapa de la investigación consistió en evaluar una posible aplicación tecnológica de este concepto de encendido a partir de los conocimientos adquiridos. Por ello, se desarrolló una metodología de diseño de precámara que combina herramientas numéricas 0D/1D y CFD. Posteriormente, la metodología fue validada en el banco de ensayos del motor, y la precámara resultante ofreció buenos niveles de rendimiento térmico y fue capaz de extender el límite de dilución con EGR.
Con ello, la presente tesis doctoral supone un avance significativo en el campo del análisis del impacto de la integración de sistemas avanzados en MCIA en general, y en MEP en particular, con el objetivo de mejorar sus prestaciones, emisiones o rendimiento, contribuyendo al esfuerzo que está realizando la comunidad científica para mitigar el impacto ambiental del sector del transporte. / [CAT] Des de la irrupció dels vehicles elèctrics en el mercat automotriu com una opció de transport neta i assequible, els fabricants de motors han estat buscant noves maneres de reduir la petjada ambiental dels actuals motors de combustió interna alternatius (MCIA). Hui dia, la majoria de les investigacions en aplicacions de vehicles de passatgers se centren a desenvolupar encara més els motors d'encesa provocada (MEP) per a promoure una nova generació de sistemes de propulsió sostenibles i d'alt rendiment.
En aquest context, el concepte d'encesa de precàmera s'està convertint en una solució atractiva per a augmentar l'eficiència tèrmica dels futurs MEP per a vehicles de passatgers, a causa de la seua capacitat d'accelerar el procés de combustió. A més, la combinació d'aquesta estratègia d'encesa amb mescles diluïdes (siga amb aire o productes de la combustió) té el potencial de millorar encara més el rendiment del motor. En particular, en comparació amb els sistemes de precàmera activa amb subministrament de combustible auxiliar, la versió passiva ofereix avantatges evidents en termes de simplicitat mecànica, assemblatge i cost. No obstant això, encara existeixen importants obstacles relacionats amb la comprensió dels aspectes fisicoquímics fonamentals del concepte (turbulència, aerodinàmica, conversió d'energia, dinàmica d'ejecció, geometria de precàmera...), que en última instància han limitat la integració d'aquesta tecnologia a la producció en sèrie.
Per tant, aquesta tesi doctoral pretén estendre el nivell de coneixement d'aquest concepte d'encesa mitjançant l'ús d'un model CFD d'última generació, validat amb un extens conjunt de mesures experimentals i seguint una metodologia especialment desenvolupada per a aquest treball de recerca. Els resultats obtinguts es divideixen en tres parts.
La primera part estudia un MEP monocilíndric d'investigació, representatiu dels vehicles actuals d'automoció, que integra el concepte de precàmera passiva en condicions estequiomètriques sense dilució. Ací s'avalua l'impacte del punt d'operació del motor, l'avanç de l'encesa i la geometria de la precàmera sobre els processos físics i termoquímics que intervenen en aquest concepte de combustió.
La segona part de l'estudi se centra a caracteritzar el concepte en condicions diluïdes amb aire i recirculació de gasos produïts per la combustió (EGR). S'analitza en profunditat l'evolució del procés de combustió i la distribució d'energia en la precàmera i en cambra principal per als límits de dilució experimentals. A més, també s'avalua l'ús d'hidrogen per a ampliar el límit de dilució amb aire.
L'última etapa de la investigació consisteix a avaluar una possible aplicació tecnològica d'aquest concepte d'encesa a partir dels coneixements adquirits. Per això, es desenvolupa una metodologia de disseny de precàmera que combina eines numèriques 0D/1D i CFD. Posteriorment, la metodologia és validada al banc d'assajos del motor, on la precàmera resultant ofereix bons nivells de rendiment tèrmic i és capaç d'estendre el límit de dilució amb EGR.
Amb això, la present tesi doctoral suposa un avanç significatiu en el camp de l'anàlisi de l'impacte de la integració de sistemes avançats en MCIA en general, i en MEP en particular, amb l'objectiu de millorar les seues prestacions, emissions o rendiment, contribuint a l'esforç que està realitzant la comunitat científica per a mitigar l'impacte ambiental del sector del transport. / [EN] Since the irruption of electric vehicles in the automotive market as a clean and affordable transportation option, engine manufacturers have been looking for new ways to reduce the environmental footprint of current internal combustion engines (ICE's). Nowadays, most of the research efforts in passenger car applications focus on further developing spark-ignition (SI) engines to promote a new generation of high-performance and sustainable powertrains.
In this context, the pre-chamber ignition concept is becoming an attractive solution to increase the thermal efficiency of future light-duty SI engines, due to its inherent capability of enhancing the combustion process. Moreover, combining this ignition strategy with diluted mixtures (either with air or exhaust gases) has the potential to further improve the engine performance and reduce pollutant emissions. In particular, compared to active pre-chamber systems with an auxiliary fuel supply, the passive version provides advantages in terms of mechanical simplicity, packaging and cost-effectiveness. However, there are still major hurdles related to the understanding of the fundamental physicochemical aspects of the concept (turbulence, scavenging, energy conversion, jet dynamics, pre-chamber geometry...), that ultimately have limited the integration of this technology into production vehicles.
Therefore, this doctoral thesis intends to fill these knowledge gaps by using a state-of-the-art CFD model, validated with an extensive set of engine tests and following a simulation methodology specially developed for this research work. The obtained results were divided into three parts:
The first part evaluated a research single-cylinder SI engine, representative of light-duty applications, operating with the passive pre-chamber system in un-diluted stoichiome\-tric conditions. Here, the impact of the engine operating point, spark timing and pre-chamber geometry over the physical and thermochemical processes that are involved in this combustion concept were evaluated.
The second part of the study focused on characterizing the concept in diluted conditions with air and exhaust gas re-circulation (EGR). The combustion evolution and energy distribution in the pre-chamber and main chamber for the experimental dilution limits were deeply analyzed. In addition, the use of hydrogen to extend the air-dilution limit was also assessed.
The final part of the investigation consisted in developing a potential technological application of this ignition concept from the acquired knowledge. Therefore, a pre-chamber design methodology combining 0D/1D and CFD numerical tools was developed and validated in the engine test bench. The resulting pre-chamber offered good levels of thermal efficiency and was able to extend the EGR dilution limit.
This doctoral thesis represents a significant advancement in the frame of analyzing the impact of advanced ignition systems and their integration in ICE's in general, and in SI engines in particular, with the aim of improving the global features of these powerplants (efficiency and emissions), contributing to the effort that the scientific community is carrying out to mitigate the environmental impact of the transportation sector. / Barbery Avila, II. (2023). CFD Modelling and Analysis of the Passive Pre-Chamber Ignition Concept for Future Generation Spark-Ignition Engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/193035
|
Page generated in 0.0677 seconds