• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 223
  • 30
  • 27
  • 21
  • 11
  • 7
  • 5
  • 2
  • 1
  • Tagged with
  • 397
  • 397
  • 129
  • 52
  • 44
  • 41
  • 39
  • 36
  • 33
  • 33
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Ultrafast Dynamics of Intramolecular Electron Transfer and DNA Repair by Photolyase

Liu, Zheyun 04 September 2013 (has links)
No description available.
82

Pyridinium Salts As Electron Traps: An Ultrafast Transient Absorption Spectroscopy Study

Khubaibullin, Ilnur 22 November 2016 (has links)
No description available.
83

Kinetic and spectroscopic characterization of the reductive and oxidative half-reactions of trimethylamine dehydrogenase

Shi, Weiwei 18 June 2004 (has links)
No description available.
84

CHIRALITY TRANSFER AND ELECTRON TRANSFER IN DENDRITIC COMPLEXES WITH STABLE SECONDARY STRUCTURE

He, Dian 07 October 2008 (has links)
No description available.
85

Redox and functional characterization of a surface loop spanning residues 536 to 541 in the flavin mononucleotide-binding domain of flavocytochrome P450BM-3 from Bacillus megaterium

Chen, Huai-Chun 27 August 2009 (has links)
No description available.
86

Monitoring Electron Transfer Reactions using Ultrafast UV-Visible and Infrared Spectroscopy

Mier, Lynetta M. 18 July 2012 (has links)
No description available.
87

Mechanistic Studies on the Monoamine Oxidase B Catalyzed Oxidation of 1,4-Disubstituted Tetrahydropyridine Derivatives

Anderson, Andrea H. 02 September 1997 (has links)
The flavin-containing monoamine oxidases (MAO) A and B catalyze the oxidative deamination of primary and secondary amines. The overall process involves a two electron oxidation of the amine to the iminium with concomitantreduction of the flavin. Based on extensive studies with a variety of chemical probes, Silverman and colleagues have proposed a catalytic pathway for the processing of amine substrates and inactivators by MAO-B that is initiated by a single electron transfer (SET) step from the nitrogen lone pair to the oxidized flavin followed by α-proton loss from the resulting amine radical cation that leads to a carbon radical. Subsequent transfer of the second electron leads to the reduced flavin and the iminium product. In the case of N-cyclopropylamines, the initially formed amine radical cation is proposed to undergo rapid ring opening to form a highly reactive primary carbon centered radical that is thought to be responsible for inactivation of the enzyme. In this thesis we have exploited the unique substrate and inactivator properties of 1,4-disubstituted tetrahydropyridine derivatives to probe the mechanism of MAO-B catalysis. Reports of the parkinsonian inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as a structurally unique substrate of MAO-B initiated these studies. Consistent with the SET pathway, the N-cyclopropyl analog of MPTP proved to be an efficient time and concentration dependent inactivator but not a substrate of MAO-B. On the other hand, the 4-benzyl-1-cyclopropyl analog is both a substrate and inactivator of MAO-B. These properties may not be consistent with the obligatory formation of a cyclopropylaminyl radicalcation intermediate. In an attempt to gain further insight into the mechanism associated with the MAO catalyzed oxidation of 1,4-disubstituted tetrahydropyridines, deuterium isotope effects studies on both the substrate and inactivation properties of the 4-benzyl-1- cyclopropyl derivative were undertaken. A series of 1-methyl- and 1-cyclopropyltetrahydropyridine derivatives bearing various heteroaro-matic groups at C-4 also have been examined. The MAO-B substrate properties, inactivator properties and partition ratios for these compounds together with preliminary results from chemical model studies are discussed in terms of the MAO-B catalytic pathway. / Ph. D.
88

Reductive and oxidative dissociative electron transfers: transition between the concerted and stepwise mechanistic pathways

Spencer, Jared Nathaniel 05 May 2016 (has links)
The dissociative electron transfer reactions of a series of α-epoxyketones and tetra-n-butylammonium acetate have been examined by electrochemical and computational techniques. Results for both the direct electrochemical (linear sweep voltammetry and convolution voltammetry) and indirect electrochemical (homogeneous redox catalysis) reductions of the epoxyketones are presented. In cases where the ring-closed radical anion generated by reduction of the epoxyketones is resonance stabilized (aromatic epoxyketones) the mechanism proceeds in a stepwise fashion, where the electron transfer and bond breaking reactions occur in sequential, discrete steps. On the other hand, where there is no additional resonance stabilization afforded to the ring-closed epoxide radical anion (aliphatic epoxyketones) the reaction proceeds in a concerted fashion, where electron transfer and ring cleavage occur simultaneously. The presence (or absence) of resonance stabilization in the ring-opened distonic radical anion plays little role in the kinetics of these dissociative electron transfers. Computations with the Density Functional Theory (B3-LYP and BHandH-LYP) on α-epoxyketones are also presented, and are in good agreement with the electrochemical results. The oxidative dissociative electron transfers of the acetate anion in "dry" and "wet" (0.5 M H2O) acetonitrile were also characterized with direct and indirect electrochemical experiments, again utilizing linear sweep voltammetry, convolution voltammetry, and homogeneous redox catalysis. There is a significant change in the observed oxidation potential of the anion upon addition of water, as well as an apparent decrease in the intrinsic barrier to the electron transfer. The possible transition from a concerted to stepwise mechanism for the dissociative electron transfer of acetate upon addition of water is examined - the electrochemical data is compared to theoretical models for both the concerted and stepwise processes. It is determined that the indirect electrochemical experiments do not proceed through an outer sphere electron transfer. Additionally, it is shown that the difference between the direct oxidation of acetate in anhydrous and wet acetonitrile is unlikely to be the result of transition from a purely concerted mechanism to a purely stepwise mechanism based on thermodynamic considerations. / Ph. D.
89

The Influence of Inner-Sphere Reorganization on Rates of Interfacial Electron Transfer in Transition Metal-Based Redox Electrolytes

Kessinger, Matthew Carl 30 September 2020 (has links)
Photovoltaic (PV) technologies are a promising approach to achieve clean, renewable energy production on a global scale. However, the widespread implementation of this technology is limited due to the intricate challenges associated with its complex electrochemical processes. One such challenge is the formation of long-lived charge-separated states (CSSs), a process that directly influences device efficiencies. Viable strategies for increasing CSS lifetimes involve the inhibition of parasitic back-electron transfer pathways. In liquid-junction PVs, electronic recombination is prevented by utilizing redox electrolytes that promote directional electron transfer at the electrode/electrolyte interface, where forward electron transfer (i.e. to the electrode) is favored and the corresponding electronic recombination reaction is impeded. To meet this criterion, researchers seek to employ redox electrolytes that undergo a spin-exchange reaction induced by electron transfer. This event, known as charge transfer-induced spin crossover (CTISC), significantly increases the reorganization energy associated with electronic recombination, producing long-lived CSSs and elevated device efficiency. This dissertation describes a suite of manganese-based redox mediators that exhibit CTISC across a tunable range (1.5 V) of formal potentials (E1/2). These complexes are utilized as redox electrolytes in liquid-junction PVs and result in a two-fold enhancement in the device efficiency relative to other CTISC redox species. Photosensitizer regeneration rates are monitored using transient absorption spectroscopy (TAS) to discern the optimal E1/2 values in this class of complexes while density functional theory is employed to calculate the reorganization energy of each species. By implementing these promising electrolytes into PV devices, scientists and engineers are armed with new tools to increase the accessibility and efficiency of next-generation PVs, thereby transforming past promises into progress. / Doctor of Philosophy / To realize next-generation renewable fuels, scientists must understand how electron transfer at an interface is controlled. This dissertation highlights one method of forming a chemically useful and long-lived charge separated state. The formation of this charge separated state is achieved through an electronic reorganization that occurs at a metal center after electron transfer. Chapters 2, 3, and 4 investigate the synthesis and characterization of new metal species that possess this electronic reorganization process and provide an advanced understanding of how this process facilitates the formation of long-lived charge separated states. This work is intended to motivate new schools of thought that aid the design of next-generation catalytic materials for light-driven chemical reactions.
90

Mechanistic studies on the light-dependent NADPH:Protochlorophyllide Oxidoreductase and animal cryptochromes

Archipowa, Nataliya January 2018 (has links)
Nature uses sunlight either as energy source or as information carrier. Photoreception is achieved by two groups of specialised proteins: photo-enzymes that catalyse photoreactions and photosensors that initiate physiological functions. In the present work mechanistic studies were conducted on one representative of each group by using site-directed mutagenesis as well as stationary and time-resolved spectroscopy. The photo-enzyme NADPH:Protochlorophyllide Oxidoreductase (POR) catalyses the light-dependent C17-C18 double bond reduction of protochlorophyllide, including a hydride and a proton transfer, to produce chlorophyllide, the immediate precursor of chlorophyll. POR provides a unique opportunity to study the hydride transfer mechanism in detail. Three distinct intermediates, prior to product formation, were observed that were interpreted as electron and proton-coupled electron transfer reactions from NADPH indicating a sequential hydride transfer mechanism. An active-site mutant, POR-C226S, yields distinct different intermediates compared to POR wild type but ends in the same chlorophyllide stereoisomer most likely due to an altered protochlorophyllide binding. This work provides the first direct observation of a stepwise hydride transfer mechanism in a biological system. Cryptochromes (CRY) are so far defined as flavoprotein blue-light photosensors that regulate the circadian clock throughout nature and are suggested as the candidate magnetoreceptor in animals. Animal CRY are subdivided into two classes of proteins: the light-responsive Type I (invertebrates) and the light-independent Type II (mainly vertebrates). The molecular basis of their different roles in the circadian clock is still unknown. Animal Type I CRY are suggested to undergo conformational changes - required for induction of subsequent signalling cascades - induced by the change in the FAD redox state due to light absorption. The study shows that in contrast to Type I animal Type II CRY do not bind tightly FAD as a cofactor due to the lack of structural features and therefore provide the molecular basis for their different biological roles ruling out a direct photomagnetoreceptor function. Further, detailed studies on a fruit fly (Dm)CRY reveal that it does not undergo a photocycle as FAD release and Trp decomposition were observed. Thus, it is suggested that light is a negative regulator of DmCRY stability linking the initial photochemistry to subsequent dark processes leading to signal transduction on a molecular level.

Page generated in 0.0231 seconds