• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 20
  • 17
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 194
  • 31
  • 31
  • 26
  • 25
  • 24
  • 21
  • 18
  • 17
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Molecular Mechanisms Regulating Embryonic Cerebral Cortex Development

Paquin, Annie 03 March 2010 (has links)
Cerebral cortex development is a complex process that integrates both extrinsic and intrinsic mechanisms. The surrounding cellular environment triggers receptor activation, which in turn initiates components of different signalling cascades and subsequently gene transcription, influencing cell survival, proliferation, and differentiation. Genetic mutations causing a loss-of-function or gain-of-function of signalling pathways elements can lead to cortical abnormalities and result in cognitive dysfunctions. In this thesis, I examined the receptor tyrosine kinase (RTK) TrkB and TrkC, the small GTPase Ras, and the C/EBP family of transcription factors, investigating their roles during cerebral cortex development. First, I looked at the role of C/EBPs during cortical cell fate determination. I determined that inhibition of C/EBPs decrease neurogenesis, keeping precursors in an undifferentiated state and later promoting their differentiation into astrocytes, while expression of an activated form of C/EBP promoted neurogenesis and reduced astrogenesis. Moreover, the inhibition of MEK, a mediator of C/EBPβ phosphorylation, also caused a decrease in neurogenesis. Thus, activation of the MEK-C/EBP pathway biases precursor cells to become neurons rather than astrocytes, thereby acting as a differentiation switch. Second, I examined the involvement of Trk signalling during cortical development. I showed that genetic knockdown using shRNA, or inhibition using dominant negative of TrkB and TrkC lead to a decrease in proliferation and later to postnatal precursor cells depletion. Moreover, it caused a reduction in number of neurons combined with mislocalization of the generated neurons to the different cortical layers. Thus, Trk signalling plays an essential role in the regulation of cortical precursor cell proliferation and differentiation during embryonic development. Third, I elucidated the effect of Costello syndrome H-Ras mutations during cerebral cortex formation. I determined that these mutations promoted cell proliferation and astrogenesis, while reducing neurogenesis. Together, these data support a model where proper Trks/Ras/MEK/C/EBP signalling is essential for normal genesis of neurons and astrocytes and show that cortical development perturbations can ultimately lead to cognitive dysfunction as seen in Costello syndrome patients.
52

Molecular Mechanisms Regulating Embryonic Cerebral Cortex Development

Paquin, Annie 03 March 2010 (has links)
Cerebral cortex development is a complex process that integrates both extrinsic and intrinsic mechanisms. The surrounding cellular environment triggers receptor activation, which in turn initiates components of different signalling cascades and subsequently gene transcription, influencing cell survival, proliferation, and differentiation. Genetic mutations causing a loss-of-function or gain-of-function of signalling pathways elements can lead to cortical abnormalities and result in cognitive dysfunctions. In this thesis, I examined the receptor tyrosine kinase (RTK) TrkB and TrkC, the small GTPase Ras, and the C/EBP family of transcription factors, investigating their roles during cerebral cortex development. First, I looked at the role of C/EBPs during cortical cell fate determination. I determined that inhibition of C/EBPs decrease neurogenesis, keeping precursors in an undifferentiated state and later promoting their differentiation into astrocytes, while expression of an activated form of C/EBP promoted neurogenesis and reduced astrogenesis. Moreover, the inhibition of MEK, a mediator of C/EBPβ phosphorylation, also caused a decrease in neurogenesis. Thus, activation of the MEK-C/EBP pathway biases precursor cells to become neurons rather than astrocytes, thereby acting as a differentiation switch. Second, I examined the involvement of Trk signalling during cortical development. I showed that genetic knockdown using shRNA, or inhibition using dominant negative of TrkB and TrkC lead to a decrease in proliferation and later to postnatal precursor cells depletion. Moreover, it caused a reduction in number of neurons combined with mislocalization of the generated neurons to the different cortical layers. Thus, Trk signalling plays an essential role in the regulation of cortical precursor cell proliferation and differentiation during embryonic development. Third, I elucidated the effect of Costello syndrome H-Ras mutations during cerebral cortex formation. I determined that these mutations promoted cell proliferation and astrogenesis, while reducing neurogenesis. Together, these data support a model where proper Trks/Ras/MEK/C/EBP signalling is essential for normal genesis of neurons and astrocytes and show that cortical development perturbations can ultimately lead to cognitive dysfunction as seen in Costello syndrome patients.
53

Electroporation-Mediated Delivery Of Macromolecules To Intestinal Epithelial Models

Ghartey-Tagoe, Esi B. (Esi Baawah) 09 January 2004 (has links)
This study was conducted to determine if electroporation could deliver membrane-impermeant molecules intracellularly to intact, physiologically competent monolayers that mimic the intestinal epithelium. The long-term effects of electroporation on these monolayers were studied to determine the kinetics with which monolayers recover barrier function. The ability of electroporation to introduce biologically active molecules, e.g., plasmid DNA and siRNA, into these monolayers, to either express a protein of interest or modify cellular function, was also studied. Results showed that intracellular uptake of calcein, a small tracer molecule, and bovine serum albumin, a globular protein, occurred uniformly throughout the monolayers and increased as a function of voltage, pulse length, and pulse number. There was no significant difference in uptake resulting from single and multiple pulses of the same total exposure time. Barrier function recovery depended on the electroporation conditions applied, with some monolayers recovering normal physiologic function within a day. Electroporation also increased the permeability of the monolayers to calcein and BSA, possibly through a combination of increased paracellular and transmonolayer transport. When compared to cationic lipid transfection (lipofection), transfection of intestinal epithelial monolayers with reporter plasmids by electroporation was more efficient in situations where high concentrations of DNA, and as a result, higher levels of expression were needed. Although uptake of DNA was high after electroporation and increased with increasing amounts of DNA, overall expreseion efficiency was still low (~3%). Electroporation-mediated transfection of intestinal epithelial monolayers with a plasmid that expressed inflammation inhibitor protein, IκВα was not always successful, probably because of low levels of protein expression. Introduction of the much smaller siRNA molecules into the monolayers by electroporation, on the other hand, was very successful at inhibiting the production of the nuclear envelope proteins lamin A and lamin C. The results of these experiments demonstrated that electroporation can introduce a wide variety of molecules intracellularly into model intestinal epithelia. These results should be useful to identify optimal electroporation conditions for transporting drugs, proteins, and genes into intestinal and, possibly, other epithelia for local drug and gene therapy, as well as for development of improved models of intestinal epithelium.
54

Transdermal delivery of cyclosporin B by electrically enhanced permeation techniques /

Wang, Su, January 1997 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, School of Pharmacy, 1997. / Typescript. Bibliography: leaves 116-141.
55

Developing electroporation as a method to obtain Stable Transformation in Drosophila melanogaster

Ali, Fuad January 2008 (has links)
In this project I have tried to obtain stable transformants of Drosophila melanogaster flies using electroporation. I have completed approximately 200 tests using different DNA concentrations, voltages and cuvettes, including a novel Petri dish cuvette which I developed and manufactured myself. I also developed new and more efficient procedures of egg collection and egg dechorionation. Although I was not  successful in obtaining true stable transformants, control experiments indicate that electroporation of DNA into embryos could be accomplished under the conditions used. The lack of stable transformants was probably due to failure of the electroporated DNA to integrate into the host genome. The reasons for why the DNA did not integrate was not further investigated in this study.
56

Influence of the cell wall on intracellular delivery by electroporation and acoustic cavitation

Azencott, Harold R. 05 1900 (has links)
No description available.
57

Occupancy and function of the hepatic HMG-CoA reductase promoter

Lagor, William Raymond. January 2006 (has links)
Dissertation (Ph.D.)--University of South Florida, 2006. / Includes vita. Includes bibliographical references. Also available online.
58

The regulatory role of Pax6 on cell division cycle associated 7 and cortical progenitor cell proliferation

Huang, Yu-Ting January 2017 (has links)
Forebrain development is controlled by a set of transcription factors which are expressed in dynamic spatiotemporal patterns in the embryonic forebrain and are known to regulate complex gene networks. Pax6 is a transcription factor that regulates corticogenesis and mutations affecting Pax6 protein levels cause neurodevelopmental defects in the eyes and forebrain in both humans and mice. In previous studies, it was shown that the graded expression pattern of Pax6 protein, which is high rostro-laterally to low caudo-medially in the cerebral cortex, is critical for its control of cell cycle progression and proliferation of cortical progenitors. However the underlying mechanisms are still unclear. Based on a microarray analysis carried out in our laboratory, a number of cell cycle-related candidate genes that may be affected by Pax6 have been identified. One such gene, Cell division cycle associated 7 (Cdca7) is expressed in a counter-gradient against that of Pax6. In my current study, I found that Cdca7 mRNA expression in the telencephalon is upregulated in Pax6 null (Small eye) mutants and downregulated in mice that overexpress PAX6 (PAX77) across developing time points from E12.5 to E15.5. There are several potential Pax6 binding motifs located in the genomic locus upstream of Cdca7. However, by chromatin immunoprecipitation, it is showed that none of the predicted binding sites are physically bound by Pax6. Promoter luciferase assays using fragments combining five suspected binding motifs show that Pax6 is functionally critical. Cdca7 is also identified as a Myc and E2F1 direct target and is upregulated in some tumours but its biological role is not fully understood. Current work using in utero electroporation to overexpress Cdca7 around the lateral telencephalon, where Cdca7 expression levels are normally low, tested the effects on the proliferation and differentiation of cortical progenitor cells in this region. In E12.5 mice embryos, overexpression of Cdca7 protein causes fewer intermediate progenitor cells and post-mitotic neurons to be produced but these effects were not found in E14.5 embryos. This result implies that Cdca7 may affect cell fate decision during cortical development.
59

Microscale Electroporation for Transfection of Genetic Constructs into Adherent Secondary Cells and Primary Neurons in Culture

January 2012 (has links)
abstract: Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge in both of the aforementioned applications is the efficient delivery of siRNA molecules, plasmids or transcription factors to primary cells such as neurons. A majority of the current non-viral techniques, including chemical transfection, bulk electroporation and sonoporation fail to deliver with adequate efficiencies and the required spatial and temporal control. In this study, a novel optically transparent biochip is presented that can (a) transfect populations of primary and secondary cells in 2D culture (b) readily scale to realize high-throughput transfections using microscale electroporation and (c) transfect targeted cells in culture with spatial and temporal control. In this study, delivery of genetic payloads of different sizes and molecular characteristics, such as GFP plasmids and siRNA molecules, to precisely targeted locations in primary hippocampal and HeLa cell cultures is demonstrated. In addition to spatio-temporally controlled transfection, the biochip also allowed simultaneous assessment of a) electrical activity of neurons, b) specific proteins using fluorescent immunohistochemistry, and c) sub-cellular structures. Functional silencing of GAPDH in HeLa cells using siRNA demonstrated a 52% reduction in the GAPDH levels. In situ assessment of actin filaments post electroporation indicated a sustained disruption in actin filaments in electroporated cells for up to two hours. Assessment of neural spike activity pre- and post-electroporation indicated a varying response to electroporation. The microarray based nature of the biochip enables multiple independent experiments on the same culture, thereby decreasing culture-to-culture variability, increasing experimental throughput and allowing cell-cell interaction studies. Further development of this technology will provide a cost-effective platform for performing high-throughput genetic screens. / Dissertation/Thesis / Ph.D. Bioengineering 2012
60

Impedance Measurements as a Means to Improve the Biological Response of Gene Electrotransfer

Fajardo Gomez, Lina 01 January 2015 (has links)
When an electric field is locally applied to tissues in vivo the uptake of exogenous DNA can be greatly increased. This approach to gene transfer, called electroporation (EP) or gene electro transfer (GET), has potential applications in the treatment of skin disorders, vaccinations, some types of cancer and metabolic diseases. The eect of electric elds on cells and tissues has been studied and related to the uptake of DNA. Tissue impedance changes have been measured as a result of electroporation. The aim of this study is to explore the predictive accuracy of impedance spectroscopy for the success of GET. Mice were used in this study for their histological similarities to human skin. The mice were injected with plasmid DNA coding for luciferase and given one of a series of electroporation treatments varying the number and intensity of the electric pulses delivered. The number of pulses delivered was based upon impedance measurements taken during the EP procedure. Mice were then imaged to quantitatively measure the luminescence resulting from the gene delivery procedure at intervals of 2, 4, 7, 10 and 14 days after treatment to quantitatively determine the biological response to gene electrotransfer. Increased luminescence was noticed in treatment groups compared to injection only groups, and the most eective treatments resulted from a feedback mechanism based upon percentage changes in skin impedance. The relationship between impedance change and gene expression suggested that treatment can be improved based on impedance measurements taken during the EP treatment.

Page generated in 0.0277 seconds